AGRODEP Modeling Component

Antoine Bouët

AGRODEP SAB and SC Meetings November 12, 2012 • Dakar, Senegal

AGRODEP MODELING COMPONENT

- At the end of 2012, the Modeling Component has developed/uploaded 9 models:
 - A Multi-country Multi-sector Dynamic CGE model
 - Two Single-Country Multi-sector CGE models
 - Three Partial Equilibrium models
 - Two econometric models
 - One Poverty Analysis model

AGRODEP MODELING Component

• End of 2012:

- <u>Multi country, multi sector general equilibrium model</u> (<u>MIRAGRODEP</u>)
- IFPRI Single country, general equilibrium model
- <u>PEP Single country, general equilibrium model</u>
- <u>Multi-market partial equilibrium model</u>
- <u>Dynamic Partial equilibrium trade model with focus on</u> <u>the HS6 level</u>
- Econometric models of trade (gravity equation)
- Poverty analysis: Top down approach for GE and PE
- <u>Stochastic Partial Equilibrium: Storage, and price</u> <u>stabilization</u>
- <u>Supply and demand estimation models</u>

AGRODEP MODELING Component

- In 2013, first: focus on the completion of the documentation for the initial set of models.
- Second: development of 6 new analytical instruments to be uploaded
 - <u>Spatial Partial Equilibrium Model</u>
 - Impact Assessment Tool Box
 - Endogenous Saving behavior in CGE
 - <u>A GLOBIOM model for AGRODEP</u>
 - <u>Econometrics of price transmission</u>
 - <u>Regional Computable General Equilibrium Model</u>

• Thank you for your attention!

ILLUSTRATIVE STUDY OF MIRAGRODEP

(EX. FROM: BOUET AND LABORDE, 2011, IMPACT OF DDA ON LDCS)

Table 6.7: Impact of the central scenario on macroeconomic variables (2025, scenario/ baseline, in percent).

Sector	Real income	Exports (volume)	Terms of trade	Unskilled real wages	
High-income countries	0.13	3.12	_	_	
Low-income countries	0.12	2.46		_	
LDCs	-0.09	-0.49	_	_	
LDCs: Asia	-0.66	-0.82	-0.35	-0.64	
LDCs: Bangladesh	-0.14	-1.54	-0.38	-0.17	
LDCs: Central and South Africa	-0.11	-0.16	-0.17	-0.01	
LDCs: East Africa	-0.03	-0.32	-0.05	-0.02	
LDCs: Malawi	-0.24	-1.12	-0.34	-0.18	
LDCs: Senegal	0.07	0.03	0.04	0.32	
West Africa (mix)	-0.08	-0.01	0.09	0.01	
Central Africa (mix)	0.13	0.66	-0.09	-0.23	
Rest of sub-Saharan Africa (non-LDCs)	0.02	-0.10	0.04	0.12	

Source: authors' calculation using the MIRAGE model.

African Growth & Development Policy	Illustrative Study of <u>IFPRI</u>
modeling consortium	<u>Model</u>
FACILITATED BY IFPKI	(EX. FROM: FOUSSEINI AND LABORDE, 2012, IMPACT OF 50% CUT IN IMPORT DUTIES ON NIGERIA'S GDP)

	SIM1	SIM2	SIM3	SIM4
GDP	2.25%	1.95%	1.66%	2.78%

- SIM1/ SIM2/ SIM3 /SIM4 correspond to different assumptions on
 - Intersectoral factor mobility
 - Savings-Investment hypothesis
 - Government closure
 - External account closure

ILLUSTRATIVE STUDY OF <u>MULTI-SECTOR PE</u> <u>MODEL</u> (EX. FROM: BOUET, ESTRADES AND LABORDE, 2012, IMPACT OF DIFFERENTIAL EXPORT TAXES ON PRODUCTION ALONG THE VALUE CHAIN)

Table 5 Impact of export tax elimination in Argentina, Indonesia and Ukraine on production,percentage change – Scenario S1

		Argentina	US	Indonesia	EU	Ukraine
Seeds	Soy	8.9	-1	-1	-0.7	-1
Seeds	Sunflower	3.9	-0.7		-0.5	2.7
Seeds	Rape	-0.1	-0.2		-0.2	-0.2
Seeds	Palm			8		
Meals	Soy	4.1	0.0	1.2	0.0	1.8
Meals	Sunflower	5.1	0.0	0.1	-0.2	-0.8
Meals	Rape	-0.1	-0.1		-0.1	-0.1
Meals	Palm			-0.1		
Oils	Soy	4.1	0	1.2	0	1.8
Oils	Sunflower	5.1	0	0.1	-0.2	-0.8
Oils	Rape	-0.1	-0.1		-0.1	-0.1
Oils	Palm			-0.1		
	Biodiesel	-0.4	0.9	-1.1	0.0	

www.agrodep.org

- 1. ILLUSTRATIVE STUDY OF <u>Dynamic HS6 PE</u> <u>MODEL</u> (EX. FROM: FONTAGNE, MITARITONNA AND LABORDE, 2008, IMPACT OF EPAS ON ACP
 - <u>LABORDE, 2008, IMPACT OF EPAS ON</u> <u>COUNTRIES' TRADE)</u>

Exports

www.agrodep.org

AGROD African Growth & Development Policy modeling consortium FACILITATED BY **IFPRI**

- Illustrative Study of a Gravity Equation
- (Extr. From Bora, Bouet and Roy, 2007)

Table 4 – Gravity model results for for infrastructure, 2001 and 2004	Africa's export stat	us, with and witho	out controlling	
	200)]	200	4
Log linear specification, 2001 (variable)	No accounting for infrastructure (1)	Accounting for infrastructure (2)	No accounting for infrastructure (3)	Acc
GDP importer	0.96***	0.96***	0.90***	
	(78.09)	(78.37)	(39.55)	
GDP exporter	1.10***	1.08****	1.18***	
	(97.16)	(83.08)	(61.96)	
Bilateral distance	-1.49***	-1.49***	-1.49***	
	(-40.93)	(-40.83)	(-24.72)	(
Distance of exporter from rest of the world	0.81***	1.27***	1.29***	

2001 (variable)	(1)	(2)	(3)	(4)
GDP importer	0.96***	0.96***	0.90***	0.90***
	(78.09)	(78.37)	(39.55)	(40.17)
GDP exporter	1.10****	1.08****	1.18****	1.15***
	(97.16)	(83.08)	(61.96)	(57.19)
Bilateral distance	-1.49***	-1.49****	-1.49***	-1.49***
	(-40.93)	(40.83)	(-24.72)	(-24.95)
Distance of exporter from rest of the world	0.81***	I.27***	1.29***	2.02***
	(6.61)	(8.04)	(6.58)	(8.81)
Distance of importer from rest of the world	0.59***	0.58***	-0.13	-0.17
	(4.75)	(4.68)	(-0.64)	(0.84)
Bilateral tariff	0.06	0.03	-0.32***	-0.38***
	(1.20)	(0.72)	(-3.50)	(-4.12)
Relative import protection	0.05	0.03	0.07	0.07
	(1.45)	(1.05)	(1.35)	(1.25)
Relative export protection	-0.12***	-0.1**	0.31****	0.36****
	(-2.77)	(-2.10)	(4.06)	(4.64)
Nontariff barriers	-0.04***	-0.05**	-0.03	-0.04
	(-2.14)	(-2.20)	(-0.81)	(-1.14)
Landlocked exporter	-0.11*	-0.09	-0.20**	-0.02
	(-1.72)	(-1.37)	(-1.97)	(-0.19)
Landlocked importer	-0.51***	-0.51***	-0.53***	-0.54***
	(-7.88)	(-7.94)	(-4.48)	(-4.59)
Colonial linkage	0.63***	0.63****	-0.36	-0.37
	(4.49)	(4.34)	(-0.98)	(-0.99)
Contiguity	0.92***	1.00%	0.81****	0.84***
	(6.79)	(7.30)	(3.46)	(3.63)
Common language	0.72***	0.70***	0.94***	0.91***
	(10.20)	(9.71)	(7.74)	(7.48)
Aircraft departures		0.01		-0.10***
		(0.44)		(-3.00)
Cell phone density		0.02		0.12***
		(1.07)		(3.10)
Road length per unit of population		0.08****		0.16***
		(2.75)		(4.42)
Share of paved roads		0.17***		0.07
		(4.37)		(1.15)
African exporter	-0.35***	-0.09	-0.27**	0.02
	(-5.08)	(-1.15)	(-2.29)	(0.20)
Number of observations	6.208	6.208	3.086	3.086
	-,	-,	5,000	5,000

ounting for rastructure

ILLUSTRATIVE STUDY OF <u>POVERTY ANALYSIS</u> (EX. FROM: ESTRADES, 2012, IMPACT OF 50% FALL IN EXPORT PRICES ON TANZANIA)

Table 1. Comparison of results obtained with each method with full employment

	Non-para	Non-parametric microsimulation			Micro-accounting method		
Indicator	Benchmark	Simulation	Percentage	Benchmark	Simulation	Percentage	
		results	variation		results	variation	
Poverty	42.1%	43.9%	4.3	42.1%	45.1%	7.1	
Extreme poverty	29.6%	31.4%	5.7	30.5%	33.0%	8.2	
Inequality	0.5808	0.5869	1.1	0.6057	0.6127	1.2	
(Gini index)							

Table 1. Comparison of results obtained with each method with unemployment

	Non-para	metric microsii	nulation	Micro-accounting method		
Indicator	Benchmark	Simulation	Percentage	Benchmark	Simulation	Percentage
		results	variation		results	variation
Poverty	42.1%	45.0%	6.9	42.1%	44.2%	4.8
Extreme poverty	29.6%	32.3%	9.2	30.5%	32.1%	5.3
Inequality	0.5808	0.5886	1.4	0.6057	0.6103	0.8
(Gini index)						

ILLUSTRATIVE STUDY OF <u>Spatial PE</u> <u>Model</u> (EX. FROM: BOUET, GRUERE AND LEROY, 2012, IMPACT OF BIOSAFETY PROTOCOL

ON TRADE IN MAIZE)

Table 6. Changes in maize and soybeans export volumes (metric tons) relative to the

Base under different scenarios

	Group 1	Group 2	Group 3	Group 4	Total
Maize					
А	-718,557	162,866	84,097	3,162	-468,433
В	-3,611,490	685,926	285,293	12,889	-2,627,381
С	-7,017,858	1,497,366	734,081	28,705	-4,757,705

• A, B and C are different scenarios concerning the change in transportation costs associated with the adoption of the protocol.

• Groups 1/2/3/4 are groups of countries distinctive in terms of implementation or not of the protocol and production or not of GM Maize.

Illustrative Study of <u>*The Globiom</u></u> <u>Model</u> (ex. From: Mosnier, Havlik Valin, et <u>Al., 2012)</u></u>*

Figure 7. Absolute area change by crop relative to the RFS2 baseline in 2020 in the U.S.

ILLUSTRATIVE STUDY OF THE IMPACT EVALUATION TOOLBOX (EX. FROM: BERNARD AND TORERO, <u>2012)</u>

• Experimental Evidence from a Rural Electrification Program in Ethiopia: importance of bandwagon effects

Table 6.2-	Bandwagon eff	fects : Twelve	e-month estin	mates	_	_	_
	(1) 10-meter radius	(2) 30-meter radius	(3) 50-meter radius	(4) 100-meter radius	(5) 200-meter radius	(6) 300-meter radius	(7) 400-meter radius
	Panel 1. Depend Ordinary least so	ent variable. Ho quares (OLS) es	ousehold has co stimates	onnected over th	ne course of the	study	
Proportion of connected neighbors within radius	0.369 (0.112)***	0.138 (0.123)	0.128 (0.124)	0.185 (0.131)	0.195 (0.128)	0.205 (0.128)	0.209 (0.128)
Panel 2. First stage. Dependent variable. Number of connected neighbors within radius OLS estimates							
	0.204	0.065	0.020	0.017	0.015	0.014	0.012

t voucher0.2960.0650.0300.0170.0150.065ecipients(0.023)***(0.003)***(0.001)***(0.000)***(0.000)***(0.000)***vithin radius	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	--

(8)500-meter

radius

0.210

(0.128)

Figure 4: Sample simulation of price and strategic stock level in MENA. The simulations start from the non-stochastic steady state, correspond to the same production shocks and are generated under the assumption of a 10 percent build-up rate.