Calculation of β 's parameters

Consider individual data

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i} \quad \text { where } \quad i=1,2, \ldots n \tag{3}
\end{equation*}
$$

Figure 1: Scatterplot of consumption and income

Now, recalling that

$$
\begin{equation*}
E(u)=0 \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Cov}(x, u)=E(x u)=0 \tag{5}
\end{equation*}
$$

and by substitution

$$
\begin{gather*}
E\left(y-\beta_{0}-\beta_{1} x\right)=0 \tag{6}\\
E\left[x\left(y-\beta_{0}-\beta_{1} x\right)\right]=0 \tag{7}
\end{gather*}
$$

Now taking the sample values of 6 and 7

$$
\begin{gather*}
n^{-1} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} x_{i}\right)=0 \tag{8}\\
n^{-1} \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} x_{i}\right)=0 \tag{9}
\end{gather*}
$$

Here we applied the method of moments, but other approaches could also be used.
Now, let's solve 8 and 9 by $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$.

Equation 8 can be expressed as:

$$
\begin{equation*}
\bar{y}=\hat{\beta}_{0}+\hat{\beta_{1}} \bar{x} \tag{10}
\end{equation*}
$$

and then

$$
\begin{equation*}
\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x} \tag{11}
\end{equation*}
$$

This is the sample intercept.
To get $\hat{\beta}_{1}$, let's substitute the expression of $\hat{\beta}_{0}$ from 11 into 9 (we can drop n^{-1} as it's only a rescaling parameter which doesn't affect the slope). After some algebraic transformations, using summation properties, and given that:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0 \tag{12}
\end{equation*}
$$

we get

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{13}
\end{equation*}
$$

the estimated slope, that is the sample counterpart of the covariance between x and y divided by the variance of x. If x and y are positively correlated, then $\hat{\beta_{1}}$ is positive, if they are negatively correlated $\hat{\beta_{1}}$ will be negative.

Figure 2: Scatterplot of consumption and income when income is fixed

The expressions 11 and 13 are the Ordinary Least Squares (OLS) estimates of β_{0} and β_{1}. To get a particular fitted value of y when $x=x_{i}$:

$$
\begin{equation*}
\hat{y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} x_{i} \tag{14}
\end{equation*}
$$

For each value $y=y_{i}$ there is a fitted value in 14. The distance between the fitted \hat{y} and the actual value y_{i} is the residual, expressed by:

$$
\begin{equation*}
\hat{u_{i}}=y_{i}-\hat{y_{i}}=y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} x_{i} \tag{15}
\end{equation*}
$$

Are $\hat{u_{i}}$ the same as u_{i} in equation 3 ?

Once we get $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$

$$
\begin{equation*}
\sum_{i=1}^{n} \hat{u_{i}^{2}}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} x_{i}\right)^{2} \tag{16}
\end{equation*}
$$

There are particular values of $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ which minimize 16 , the sum of squared residuals.
Quite coincidentally, these values are given by 8 and 9 (apart from n^{-1}). Instead of the methods of moments, we could have applied a minimization of 16, deriving the First Order Conditions (FOC) for the OLS, whose solutions are 11 and 13 . This is why they are called "ordinary least squares".

Now we get everything for the regression line of graph 1 :

$$
\begin{equation*}
\hat{y}=\hat{\beta_{0}}+\hat{\beta_{1}} x \tag{17}
\end{equation*}
$$

This is also called the sample regression function (SRF), why?
Because it is the sample counterpart of equation 2. With a different sample, we would get different values of $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ in equation 17 .

Economists always focus on $\hat{\beta}_{1}$, as they are interested in the change in \hat{y} for a unit change in x. In fact, being

$$
\begin{equation*}
\hat{\beta_{1}}=\Delta \hat{y} / \Delta x \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta \hat{y}=\hat{\beta_{1}} \Delta x \tag{19}
\end{equation*}
$$

Let's look at an empirical example.

Figure 3: Scatterplot of consumption and income, sample and population

