Yield & Climate Variability: Learning from Time Series & GCM

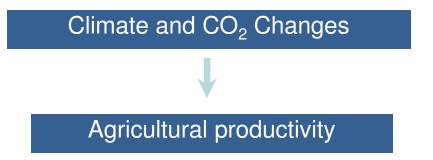
Presented by:

Amer Ahmed, World Bank

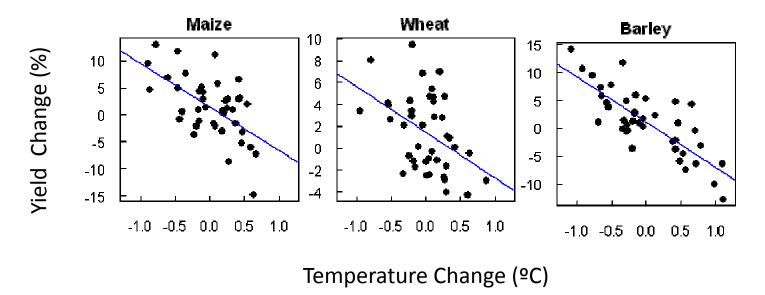
AGRODEP Workshop on Analytical Tools for Climate Change Analysis

June 6-7, 2011 • Dakar, Senegal

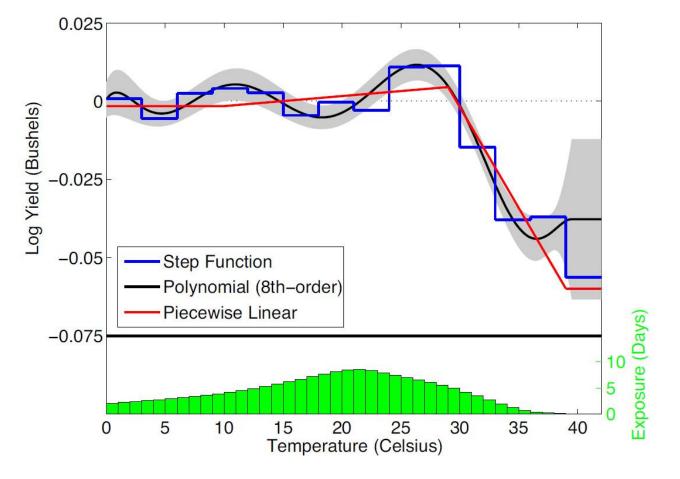
Please check the latest version of this presentation on: <u>http://agrodep.cgxchange.org/first-annual-workshop</u>

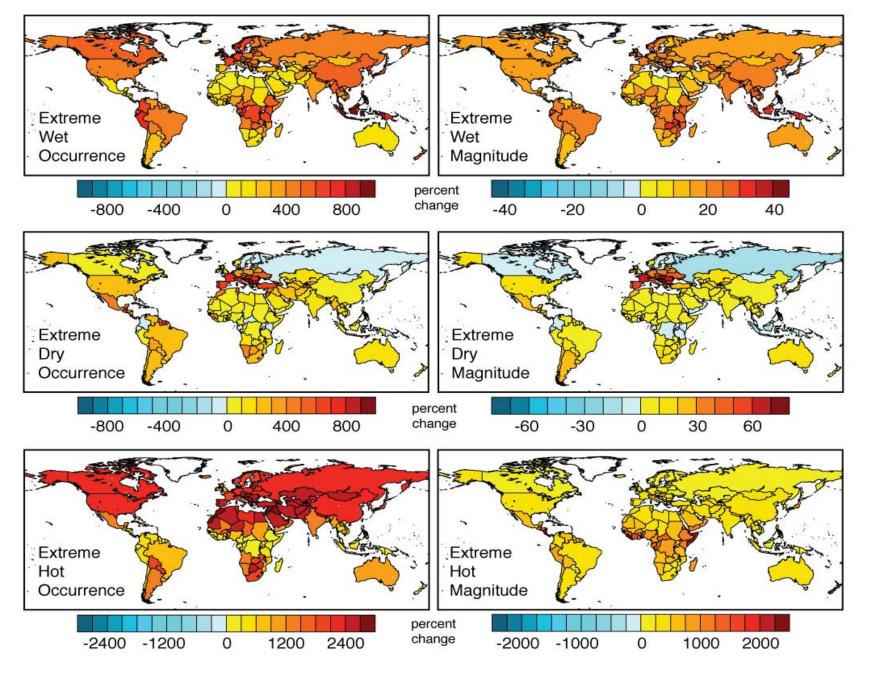

Yield & Climate Variability: Learning from Time Series & GCM

Amer Ahmed World Bank June 7, 2011


AGRODEP Members' Meeting and Workshop Dakar, Senegal

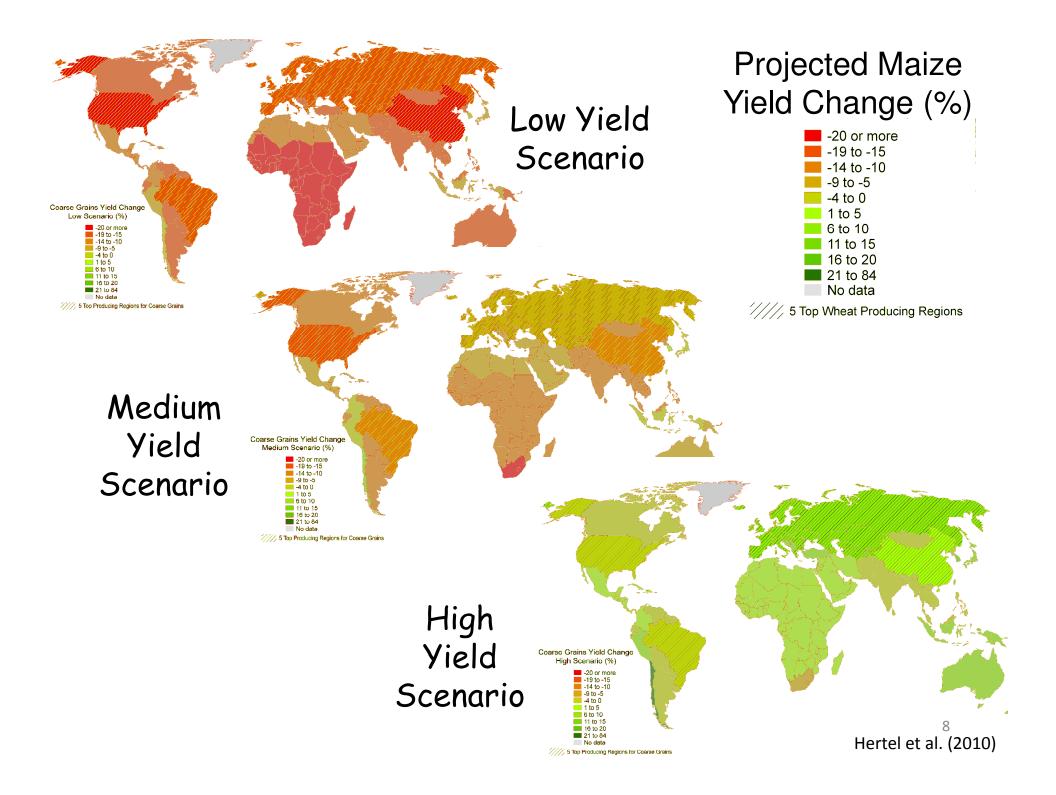
Outline


- General discussion on statistical models of crop response & climate
- Illustrations & insights from recent research
- Understanding implications of tool
- Uncertainties
 - Obtaining bounded results and robust conclusions


Average Global Yields vs. Temperatures, 1961-2002

US Maize Yield Response to Temperature

Schlenker and Roberts (2008)


⁵ Ahmed et al. (2009)

Changing Climate Volatility

- Extreme outcomes may be particularly important for agriculture (White et al, 2006; Mendelsohn et al, 2007)
- Climate volatility is already changing (Easterling et al, 2000)
 - Higher temperature and precipitation extremes in the future (IPCC, 2007)

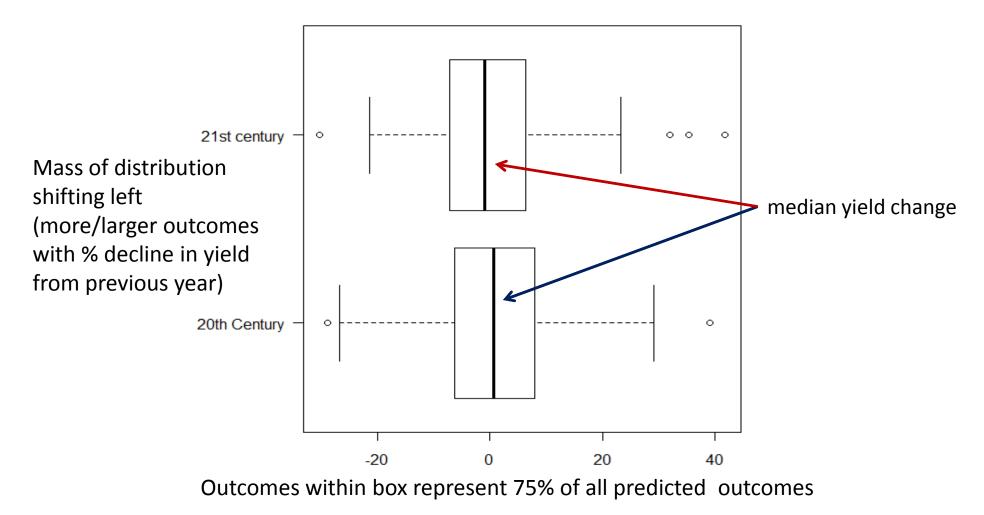
Synthesis of statistical studies

- Undertaken by David Lobell (Stanford) based on work published in *Science* as well as a survey of other published work
- Relatively near term time horizon: 2030
- Estimates for 6 crop categories:
 - Tropical maize adversely affected due to low responsiveness to CO2 fertilization, greater sensitivity to heat stress
 - Consider most-likely case, as well as 5th percentile (pessimistic scenario) and 95th percentile (optimistic scenario) values in distribution of potential yield impacts

Illustration: Sensitivity of Tanzanian Grain to Climate Volatility

- Ahmed et al. (GEC, 2011)
- Econometric estimation using panel data from 17 administrative regions: 1992-2005
 - Maize, rice, and sorghum yields (tonnes/ha)
 - Temperature (growing season mean in degrees C)
 - Precipitation (growing season mean in mm/month)
- Use yield equation to translate historical and future climate into output changes

Insights (I)


- Interpretation is important
 - Forecasts will be climate-instrumented since climate variables only explain part of the variation in annual yield
 - These are annual yields as explained only by climate variables so technology, policy, & other factors not considered
 - Yield is dependant variable, NOT production
 - Production would depend on yields + area harvested, another source of variation

GCM Name	GCM Code	Percent Difference in the Average Value in the 21 st Century from the Average Value in the 20 th Century (%)			Percent Difference in the Standard Deviation in the 21 st Century from the Standard Deviation in the 20 th Century (%)		
		Bias- Corrected Average Monthly Growing Season Temp.	Bias- Corrected Average Monthly Growing Season Precip.	Annual Average Grains Yield	Average Monthly Growing Season Temp.	Average Monthly Growing Season Precip.	Annual Average Grains Yield
bccr_bcm2_0	01	1.20 (0.27)	7.21	11.72	-21.46	-4.54	-11.90
cccma_cgcm3_1	02	1.68 (0.38)	20.86	15.81	-29.40	28.09	3.28
cccma_cgcm3_1_t 63	03	3.52 (0.80)	11.11	6.78	4.72	1.97	5.05
cnrm_cm3	04	3.52 (0.80)	1.99	3.17	43.29	24.37	34.21
csiro_mk3_0	05	1.17 (0.26)	3.38	10.28	37.60	14.45	18.72
gfdl_cm2_0	06	2.67 (0.60)	11.02	9.12	45.14	12.28	19.04
gfdl_cm2_1	07	1.72 (0.39)	0.12	7.46	-14.89	-19.68	-17.91
giss_aom	08	3.82 (0.86)	3.14	2.78	-8.07	-28.34	-22.84
giss_model_e_h	09	3.69 (0.83)	6.06	4.31	31.72	16.43	21.61
iap_fgoals1_0_g	10	1.70 (0.38)	0.32	7.59	-6.40	-7.60	-2.74
ingv_echam4	11	2.13 (0.48)	1.89	7.00	-8.90	7.47	5.07
inmcm3_0	12	3.53 (0.80)	11.12	6.76	9.87	6.87	-23.27
ipsl_cm4	13	3.34 (0.76)	5.13	4.91	10.33	0.93	9.69
miroc3_2_hires	14	4.90 (1.11)	8.12	1.75	19.35	7.07	5.06
miroc3_2_medres	15	2.33 (0.53)	3.74	7.18	26.51	1.31	-14.85
miub_echo_g	16	1.71 (0.39)	1.81	8.15	-3.58	-15.23	-7.32
mpi_echam5	17	0.88 (0.20)	-1.74	9.06	25.84	-6.18	1.50
mri_cgcm2_3_2a	18	1.99 (0.45)	-1.26	6.15	32.97	-8.10	-0.11
ncar_ccsm3_0	19	4.07 (0.92)	17.18	7.67	4.21	-10.38	-25.56
ncar_pcm1	20	2.80 (0.63)	-0.64	4.14	-5.64	-18.57	-13.84
ukmo_hadcm3	21	2.01 (0.45)	-10.42	2.46	-2.98	-10.95	-16.56
ukmo_hadgem1	22	3.20 (0.72)	-4.54	1.47	29.98	-14.63	-4.58
Average		2.62 (0.59)	4.35	6.62	10.01	-1.04	-1.74
Average Absolute		2.62 (0.59)	6.04	6.62	19.22	12.06	12.94
Sign Consistency		1.00	0.72	1.00	0.52	-0.09	-0.13

Insights (II)

- Climate model data need to be bias-corrected before use
 - Calibrating GCM data to have same 1st and 2nd
 moments as historical data used in estimation
- Yield forecasts may differ widely based on GCM that are used as inputs
- Challenging to interpret
 - Solution: bounded envelope
 - Pool forecasts based on most volatile GCMs

Distribution of Interannual % Changes in Tanzanian Grains Yield due to Climate

13 Ahmed et al. (2011)

Strengths

- Avoids biophysical modeling
- Statistical measures of
 accuracy (e.g. model fit)
- (Potentially) fewer data demands
- Does not need calibration
- Endogenously captures farmer adaptation (to an extent)

Weaknesses

- Avoids biophysical modeling
- Forecasting limitations
- Difficult to model counterfactual adaptive behavior
- Does not account for Ricardian responses
- Sensitive to data