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Overview

Learn about the consequences of heteroskedasticity and serial
correlation in the error term

Discuss construction of variance-covariance matrices, as well
as appropriate bootstrapping techniques

Discuss recent work on general clustering in error processes
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Overview

With microdata it is likely that heteroskedasticity is present,
either from clustering or impacts from the covariates in the
model

With long panels it is conceivable that serial correlation is
present

Need to account for these impacts to conduct robust inference
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Heteroskedasticity Based on Clustering

When we think of the fixed effects framework for the
unobserved effects model heteroskedasticity manifests itself
through εit

Can think of the Arellano (1987) approach to construct robust
variance-covariance matrix discussed in Lecture 3

However, if clustering is present then a more efficient
construction of the variance-covariance matrix can be built
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Heteroskedasticity Based on Clustering

In the fixed effects framework we can think of clustering as
both a mean and variance effect from the unobserved effects

That is, ci or dt impact both E[yit|xit, ci, dt] and
V ar(yit|xit, ci, dt)
In this case the heteroskedasticity is unchecked because we
can have heteroskedasticity in the ith dimension, in the tth
dimension and the it dimension

Alternatively, consider clusters, which are (sub)sets of our
panel dimenions

If i represents an individual, a cluster could be the gender of
the person or the race of the person

If t represents a time period, a cluster could be years in which
there is a drought

Here the clusters are potentially smaller groupings that the
full panel dimensions



APDE

Heteroskedasticity Based on Clustering

Recently Cameron, Gelbach and Miller (2011) proposed a
robust variance-covariance estimator for two-way clustering;
see also Thompson (2011)

To help understand this estimator lets first think about the
impact of clustering in a one-way setting

Recall (15) from Lecture 3

V ar(β̃) = (X̃ ′X̃)−1

[
N∑
i=1

X̃ ′i ˆ̃εi ˆ̃ε
′
iX̃i

]
(X̃ ′X̃)−1 (1)

Here clustering is by the individual
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Heteroskedasticity Based on Clustering

Now suppose we have clustering based on g ∈ {1, 2, . . . , G}
groups

Cameron, Gelbach and Miller (2011, eq 2.4) provide the
one-way cluster robust variance-covariance matrix estimator

V ar(β̃) = (X̃ ′X̃)−1

 G∑
g=1

X̃ ′g ˆ̃εg ˆ̃ε′gX̃g

 (X̃ ′X̃)−1 (2)

If G = N then this is exactly the variance-covariance matrix
for the random effects framework (clustering at the individual
level)

We can gain some intuition for the two-way cluster robust
framework by thinking a bit more about the one-way setup
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Heteroskedasticity Based on Clustering

Rewrite (2) as

V ar(β̃) = (X̃ ′X̃)−1B̂(X̃ ′X̃)−1 (3)

where B̂ = X̃ ′
(

ˆ̃εˆ̃ε′ � SG
)
X̃

Here � represents Hadamard matrix multiplication
(element-wise) and SG is an NT ×NT matrix with (i, j)th
element equal to 1 {i, j ∈ same cluster}
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Heteroskedasticity Based on Clustering

Now lets assume there are two dimensions to grouping,
g ∈ {1, 2, . . . , G} and h ∈ {1, 2, . . . ,H}
Here we have

V ar(β̃) = (X̃ ′X̃)−1B̂(X̃ ′X̃)−1 (4)

where B̂ = X̃ ′
(

ˆ̃εˆ̃ε′ � SGH
)
X̃

In the two-way clustering setup SGH is an NT ×NT matrix
with (i, j)th element equal to
1 {i, j ∈ share at least one cluster}
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Heteroskedasticity Based on Clustering

An insightful decomposition of B in the two way setting is
possible

Note that SGH = SG + SH − SG∩H , thus

B̂ = X̃ ′
(

ˆ̃εˆ̃ε′ � SG
)
X̃+X̃ ′

(
ˆ̃εˆ̃ε′ � SH

)
X̃

−X̃ ′
(

ˆ̃εˆ̃ε′ � SG∩H
)
X̃ (5)

Using (5) in (4) yields

V ar(β̃) = V arG(β̃) + V arH(β̃)− V arG∩H(β̃) (6)
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Heteroskedasticity Based on Clustering

The decomposition in (7) is instructive

The total two-way cluster-robust variance covariance matrix is
made up of the individual one-way cluster robust variance
covariance matrices, minus the joint clustering (we subtract to
avoid double counting)

This decomposition suggests a useful one-way implementation
to construct V ar(β̃):

- Compute the within estimator and estimate the variance matrix
clustering purely on G, purely on H and purely on G ∩H

- Combine these three variance matrices to construct the full,
two-way cluster robust variance-covariance matrix
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Heteroskedasticity Based on Clustering

Practical Considerations

The clustering of standard errors, either one-way or two-way,
hinges on the fact that the user know the direction of the
clustering

Currently no test exists for clustering in a given dimesion

However, it is straightforward to think of exploiting the fact
that clustering in a given dimension presents itself as a
specific structure in the error terms (think serial correlation in
the one-way random effects model) which could be tested

For example, if clustering was based on gender, then we would
expect correlation amongst the error terms for all men and all
women
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Heteroskedasticity Based on Clustering

Practical Considerations

As with heteroskedasticity robust standard errors, cluster
robust standard errors are biased downwards

Cameron, Gelbach and Miller (2008) present several small
sample corrections that are useful in practice

If you are using statistical software to construct your standard
errors it is useful to know which (if any) correction is used

For example, Stata uses
√

G(NT−1)
(G−1)(NT−K)

ˆ̃εg in place of ˆ̃εg for

one-way cluster robust construction
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Heteroskedasticity Based on Clustering

Practical Considerations

Thompson (2011) provides a detailed discussion of when to
use clustered standard errors based on individual and time

There are three features of the data that are important to
consider when deciding if clustered standard errors are useful:
the distribution of the errors, the distribution of the regressors,
and the number of observations in both clustering dimensions

Using Cameron et al.’s (2011) decomposition of the clustered
variance-covariance formula in (7), clustering on firm and time
yields

V ar(β̃) = V arfirm(β̃) + V artime(β̃)− V arwhite(β̃) (7)

where V arwhite(β̃) is the usual heteroskedasticity robust
variance covariance matrix of White (1980)
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Heteroskedasticity Based on Clustering

Practical Considerations

If the analyst only clusters on firm, then
V artime(β̃)− V arwhite(β̃) is omitted from the variance
estimate

If the analyst only clusters on time, then
V arfirm(β̃)− V arwhite(β̃) is omitted from the variance
estimate

When these omitted terms are large, there will be meaningful
consequences on the variance estimates

For example, if, conditional on the regressors, the error terms
are not correlated across firms, then there is no bias induced
by omitting clustering on time
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Heteroskedasticity Based on Clustering

Practical Considerations

Thompson also shows that it is more important to cluster on
the smaller dimension, in micro panels this would be clustering
based on time

One can show that if the dimensions of the panel are severely
distorted then we need not worry about clustering in both
dimensions

lim
T→∞,N fixed

V arfirm(β̃) + V artime(β̃)− V arwhite(β̃)

V arfirm(β̃)
= 1

(8)

Intuition: as T becomes large, we average away noise due to
variation across time, but we do not average away noise due
to variation across firms

The opposite results would hold if we held T fixed and let N
grow large
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Heteroskedasticity in the Random Effects Framework

Within the random effects framework we can think of allowing
each of the three error components to be heteroskedastic

Mazodier and Trognon (1978) consider the modified random
effects framework with ci ∼ D(0, σ2ci) and εit ∼ IID(0, σ2ε)

In this case the variance covariance matrix of the one-way
error component uit = ci + εit is

Ω = diag(σ2ci)⊗ JT + σ2ε (IN ⊗ IT ) (9)

where diag(σ2ci) is an N ×N diagonal matrix
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Heteroskedasticity in the Random Effects Framework

Baltagi and Griffin (1988) implemented this random effects
framework by following Fuller and Battese (1974), replace JT
with T J̄T and IT with ET + J̄T

Doing so yields

Ω = diag(Tσ2ci + σ2ε)⊗ J̄T + σ2ε (IN ⊗ ET ) (10)



APDE

Heteroskedasticity in the Random Effects Framework

From this spectral decomposition we have

Ωr = diag[(τ2i )r]⊗ J̄T + (σ2ε)
r (IN ⊗ ET ) (11)

where τ2i = Tσ2ci + σ2ε

Premultiplication by σεΩ
−1/2 yields the variable

transformation ž = zit − θiz̄i· where θi = 1− (σε/τi)

OLS estimation of y̌ on X̌ produces the GLS estimator
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Heteroskedasticity in the Random Effects Framework

Given that σ2ci is unknown it must be estimated

However, as noted by Phillips (2003), this leads to an
incidental parameters problem unless T −→∞
An alternative is to parametrically specify σ2ci and use the
residuals from within estimation to consistently estimate the
unknown parameters of the individual skedastic functions
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Heteroskedasticity in the Random Effects Framework

We could switch the source of the heteroskedasticity in the
one-way model

ci ∼ IID(0, σ2c ) and εit ∼ D(0, σ2εit)

However, it is likely that heteroskedasticity likely occurs at all
levels of the error component

In this setting some restrictions must be made otherwise there
are more parameters than observations (N +NT )

When this happens a similar transformation of y and X will
occur, but the form of ž is complicated; see Randolph (1988,
page 352)
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Heteroskedasticity in the Random Effects Framework

Given that misspecification of the heteroskedasticity of the
error term can cause problems, it is advised to construct
robust standard errors; this is the common recommendation in
cross-sectional settings

However, in panel data settings, one must also contend with
the assumptions implicit in the fixed and random effects
framework

Thus, in panel data settings, heteroskedasticity is a more
important phenomena to understand that in the
cross-sectional setting
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Serial Correlation

The extant serial correlation in the error term for the random
effects framework of the unobserved effects model is quite
simple

When studying relationships such as capital investment,
inflation or consumption this is not general enough

Ignoring this form of serial correlation will result in consistent
but inefficient estimators of the coefficients and biased
estimators of the variance-covariance matrix

When serial correlation is present a generalization of the Fuller
and Battese (1973)transformation can be used to correct for
the presence of serial correlation
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Serial Correlation

Our random effects framework is

yit = xit′β + ci + εit (12)

where ci ∼ IID(0σ2c ) and εit = ρεi,t−1 + νit

Using this setup, Baltagi and Li (1991) derive the GLS
transformation following the pure time-series approach of
Prais and Winsten
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Serial Correlation

The transformation makes use of the fact that
νi,0 ∼ IID(0, σ2ν/(1− ρ2)) which results in a transformation
matrix for each individual of

Γ =



√
1− ρ2 0 0 · · · 0 0 0
−ρ 1 0 · · · 0 0 0
0 −ρ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · −ρ 1 0
0 0 0 · · · 0 −ρ 1


(13)

The transformed regression error is

u = (In ⊗ Γ)(c+ ε) = (In ⊗ ΓıT )c+ (In ⊗ Γ)ε (14)
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Serial Correlation

Noting that ΓıT = (1− ρ)̃ıT where ı̃T = ($, ı′T−1) with

$ =
√

(1 + ρ)/(1− ρ), u can be written as

u = (1− ρ)(In ⊗ ı̃T )c+ (In ⊗ Γ)ε (15)

The variance-covariance matrix of the transformed errors is
then

Ω = σ2c (1− ρ)2(IN ⊗ ı̃T ı̃′T ) + σ2ν(IN ⊗ IT ) (16)
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Serial Correlation

Following Wansbeek and Kapteyn, notice that
d2 = ı̃′T ıT = $2 + (T − 1)

We can replace ı̃T ı̃
′
T with ϕ2J̄$T in (16) and note that

IT = E$T + J̄$T , then the spectral decomposition of Ω is

Ω = σ2$(IN ⊗ J̄$T ) + σ2ν(IN ⊗ E$T ) (17)

where σ2$ = d2σ2c (1− ρ)2 + σ2ν

Lastly, σνΩ−1/2 = (IN ⊗ IT )− θ$(IN ⊗ J̄$T ) with
θ$ = 1− (σν/σ$)
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Serial Correlation

Using this transformation we have the transformation

ži = σνΩ−1/2zi = (zi1 − θ$$ri, zi2 − θ$ri, . . . , ziT − θ$ri)
(18)

where

ri =

$z∗i1 +
T∑
t=2

z∗it

d2
(19)

and z∗ = (IN ⊗ Γ)z
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Serial Correlation

Notice that the first observation for each individual gets a
different transformation than the remainder of the
observations

There is a transformation stemming from the Prais and
Winsten transformation (this is so the first observations are
not discarded as in a Cochrane and Orcutt type
transformation)

There is also a Fuller and Battese transformation on top of
this transformation

Notice that if ϕ = 1, then d2 = T , σ2ϕ = σ21 and θ$ = θ, the
classic one-way GLS transformation with no serial correlation
arises
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Serial Correlation

Baltagi and Li (1991) suggesting estimating ρ via Q̂1−Q̂2

Q̂0−Q̂1

where

Q̂s =

N∑
i=1

T∑
t=s+1

ûitûi,t−s

N(T − s)
(20)

using pooled OLS residuals

Once an estimate of ρ has been determined, the unknown
variance components can be estimated using the pooled OLS
residuals (with the corresponding Prais-Winsten
transformation) with

σ̂2ν = u′(IN ⊗ E$)u/N(T − 1) (21)

and
σ̂2$ = u′(IN ⊗ J̄$T )u/N (22)
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Serial Correlation

Similar transformations exist for AR (2) and AR(4)
specifications of the error term as well

Special care is needed when there exist unequal spacing across
individuals, but a simple transformation still exists

MA (1) processes can also be accomodated

If concerned about serial correlation should test for its
presence using methods described from lecture 2
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Bootstrapping

While cluster-robust and heteroskedasticity robust standard
errors are simple to compute, in small sample settings they
can be unreliable

An alternative to asymptotically valid formulas is to deploy
the bootstrap

While resampling in a cross sectional setting is relatively
straightforward, resampling from a panel requires additional
care
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Bootstrapping

Cameron, Gelbach and Miller (2008) recently discussed
bootstrapping in panel data models where clustering is present

Robust standard errors are only valid asymptotically and
typically require the number of observations or clusters goes
to infinity

In many economic settings this is untenable; A study where
clustering is on the number of regions of the world will clearly
not be able to argue convincingly that the number of regions
is increasing

Bias adjustment of clustered standard errors is possible
(Angrist and Lavy, 2002) but this is not a panacea
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Bootstrapping

Bootstrap methods generate a number of pseudo-samples
from the original sample

For each pseudo-sample calculate the statistic of interest, and
use the distribution of this statistic across pseudo-samples to
infer the distribution of the original sample statistic (instead
of using the asymptotic distribution)

Many options for resampling the data available; which one to
use?
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Bootstrapping

In panel dimension there is a further complication that does
not exist when bootstrapping in cross-sectional settings – the
unbalanced panel

When we bootstrap we want the resamples to have the same
size as the original sample, however, given the time dimension,
we also want to sample individuals using all available
observations

From resample to resample the sample size could be bigger or
smaller than the original sample depending on those
individuals that are selected

This would suggest that a pairs bootstrap would not work well
in unbalanced panel data settings
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Bootstrapping

Can use the unbalanced wild bootstrap

How it works:

- Resample residuals for each individual based on standard wild
bootstrap methodology

- ALL residuals for an individual are multiplied by same rescaling

This ensures that the sample size is constant across resamples
and within person correlation is accounted for
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Bootstrapping

Wild Bootstrap Methodology

For the estimated unobserved effects model we have residuals
ε̂it = yit − ĉi − x′itβ̂
For the ith individual’s residuals, {ε̂i1, . . . , ε̂iTi}, form
bootstrap residuals

{
ε̂∗i1, . . . , ε̂

∗
iTi

}
= a · {ε̂i1, . . . , ε̂iTi} with

probability pa and = b · {ε̂i1, . . . , ε̂iTi} with probability pb
The constants a and b and probabilities pa and pb depend on
the type of wild bootstrap deployed

- The Mammen (1993) version of the wild bootstrap uses
a = (1−

√
5)/2 ≈ −0.6180 and b = 1− a ≈= 0.3820 with

probabilities pa = (1 +
√

5)/2
√

5 ≈ 0.7236 and
pb = 1− pa ≈ 0.2764

- The Rademacher version of the wild bootstrap uses a = 1 and
b = −1 with probabilities pa = pb = 0.5

This could be generalized to resample on clusters different
than the individual (region or time for example)
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Bootstrapping

Wild Bootstrap Methodology

The Mammen wild bootstrap ensures that the first three
moments of the resampled residual distribution match the first
three moments of the actual residual distribution while the
Rademacher wild bootstrap can only match the first two
moments

The matching on the third moment is important theoretically

Standard bootstrap theory dictates that the bootstrap
provides asymptotic refinements because it captures
departures from symmetry (the third moment)

Thus, the bootstrap can provide finite sample improvements
over asymptotic approxmiations based on the degree of
asymmetry it can capture
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Bootstrapping

Wild Bootstrap Methodology

Wild bootstrap standard errors
1 Estimate β̂ and ĉi
2 For a resample

{
(y∗11, ε̂

∗
11), . . . , (y∗NTN

, ε̂∗NTN
)
}

using the wild
bootstrap for the appropriate cluster

3 Obtain estimates β̂∗
s and ĉ∗i,s

4 Repeat steps 2 and 3 B times

5 Reject H0 : at the α level if tj > zBα/2 where tj =
β̂j−βo

j

s.e.(β̂j,B)
and

s.e.(β̂j,B) =

(
1

B − 1

B∑
s=1

(
β̂∗
j,s −

¯̂
β∗
j

)2)1/2

where
¯̂
β∗
j = B−1

B∑
s=1

β̂∗
j,s
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Bootstrapping

Wild Bootstrap Methodology

There are a total of
(
2n−1
n

)
unique resamples of the data

This gets larger very quickly as n increases

In practice want B large enough to obtain a good
approximation, but small enough that the computational
burden is minimal

At a minimum B should be such that α(B + 1) is an integer;
this ensures that your bootstrap can produce a test with exact
size

B controls the power of your test, larger B equates to a
smaller power loss

Common in practice to see B = 399 and B = 999; quite
interestingly, B should be selected with regarding to
significance level being tested

Smaller α, larger B should be
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Highlights from this Lecture

Discussed importance of clustering, heteroskedasticity and
serial correlation

Easily remedied in applied settings using bootstrap, GLS type
corrections and/or heteroskedasticity robust covariance
matrices

Bootstrap provides a simple finite sample approach to
calculating robust statistics and standard errors
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