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Introduction

Discuss tests of poolability and correlation between covariates
and unobserved heterogeneity

Both of these tests have important implications for how we
think about the linear panel data model
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Introduction

Having estimated the pooled panel data model, it is natural to
question the existence of unobserved heterogeneity

Having estimated the unobserved effects model under both
the fixed and random effects framework, a natural question is
which one is more appropriate for the data at hand?
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Introduction

We will discuss the intuition for both of these tests

Specific attention will be given to the fixed vs. random effects
estimation frameworks

Learn how to use Monte Carlo simulations to understand how
these tests work
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A Test of Poolability

Testing for poolability naturally arises when considering the
unobserved effects model

Now, there are a few conceptual issue to think about prior to
testing for poolability

- Is the appropriate unobserved effects model in the fixed or
random effects framework?

- Do only the intercepts vary or can other coefficients vary
across individuals?
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A Test of Poolability

The Fixed Effects Framework

Lets look at the simplest pooling setup, the fixed effects
framework for the unobserved effects model

Further, we will assume that only the intercepts vary across
individuals

In this case our null hypothesis is

H0 : c1 = c2 = · · · = cN = 0 (1)
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A Test of Poolability

The Fixed Effects Framework

This is simply at F -test in the mold of Chow (1961)

Our test statistic in this case is

F =
RSSR −RSSUR

RSSUR
· N(T − 1)−K

N − 1
(2)

which is distributed asymptotically as FN1,N(T−1)−K

RSSR would be the residual sum of squares from the pooled
OLS model while RSSUR would be the residual sum of
squares from the fixed effects framework
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A Test of Poolability

The Fixed Effects Framework

Failure to reject H0 does not imply that the pooled OLS
model is appropriate

Keep in mind that there could be underlying sources of
misspecification that contribute to what you learn from this
test

Perhaps the model is misspecified functional, perhaps the
coefficients on some of the individual-time varying covariates
differ across individuals, perhaps the random effects
framework is appropriate, etc.
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A Test of Poolability

The Fixed Effects Framework

We will ignore functional misspecification for the time being
and focus on a model where all of the coefficients are allowed
to vary across individuals

Consider the unobserved effects model, but where β can now
vary across individuals

yit = x′itβi + ci + εit (3)

For this setup we act as though we treat each cross section
independently from all other cross sections
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A Test of Poolability

The Fixed Effects Framework

Our hypothesis of interest is H0 : ci = c, βi = β ∀i so that our
restricted model becomes the pooled model

Keep in mind that T must be larger than K for this test to be
implementable

For many micro panels this will not be feasible as T may be
on the order of 5-10 while K may be on the order of 15-30

However, the discussion here can easily be modified to allow a
subset of β to vary across individuals
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A Test of Poolability

The Fixed Effects Framework

An important implicit assumption when testing H0 under the
fixed effects framework is that ε ∼ IID(0, σεINT )

If heteroskedasticity or autocorrelation is present (as in the
random effects framework) then a robust test statistic will be
needed

If the constant variance assumption fails then the test for
poolability will be grossly misleading
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A Test of Poolability

The Fixed Effects Framework

How do we implement the test?

Lets introduce some matrix notation

For individual i our unrestricted regression model is

yi = Ziδi + εi (4)

where y′i = (yi1, yi2, . . . , yiT ), Zi = [ıT , Xi] and
ε′i = (εi1, εi2, . . . , εiT )

Note that Xi is T ×K, δ′i is 1× (K + 1) while both yi and εi
are T × 1
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A Test of Poolability

The Fixed Effects Framework

With this unrestricted model our null hypothesis can be
written as H0 : δ1 = δ2 = · · · = δN = δ

Our restricted model is

y = Zδ + ε (5)

Here Z ′ = (Z ′1, Z
′
2, . . . , Z

′
N ) and ε′ = (ε′1, ε

′
2, . . . , ε

′
N )
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A Test of Poolability

The Fixed Effects Framework

Estimation of the restricted model in (5) produces the
estimator δ̂OLS = (Z ′Z)−1 Z ′y

Estimation of each of the unrestricted models in (4) produces
the estimator δ̂i,OLS = (Z ′iZi)

−1 Z ′iyi

Define ε̂∗i = yi − Ziδ̂i,OLS and ε̂ = y − Zδ̂OLS

Further, let ε̂∗′ = (ε∗′1 , ε
∗′
2 , . . . , ε

∗′
N )
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A Test of Poolability

The Fixed Effects Framework

The test statistic for the null hypothesis of poolability of the
data is

F =
ε̂′ε̂− ε̂∗′ε̂∗

ε̂∗′ε̂∗
N(T − 1−K)

(N − 1)(K + 1)
(6)

ε̂′ε̂ is exactly RSSR and ε̂∗′ε̂∗ is exactly RSSUR, the only
difference with the earlier setting is that now we allow more
parameters to vary across individuals

This is exactly a Chow test but for N groups instead of the
common 2 groups that is routinely used in applied work
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A Test of Poolability

The Fixed Effects Framework

If heteroskedasticity or autocorrelation was perceived to be
relevant for the modeling situation then a robust form of the
test statistic in (6) will be needed

If instead of assuming that ε ∼ IID(0, σεINT ) we assume
ε ∼ D(0,Σ), then we would need to deploy FGLS when we
estimated both the unrestricted and restricted models

Under GLS, our restricted model is
Σ−1/2y = Σ−1/2Zδ + Σ−1/2ε
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A Test of Poolability

The Fixed Effects Framework

Under GLS our unrestricted model for individual i is
Σ−1/2y = Σ−1/2Z∗δ∗ + Σ−1/2ε where

Z∗ =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZN


and δ∗′ = (δ′1, δ

′
2, . . . , δ

′
N )
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A Test of Poolability

The Fixed Effects Framework

Use ˙̂ε to denote the residuals from the restricted model

Use ˙̂ε∗ to denote the residuals from the unrestricted model

Then our robust F-statistic is

F =
˙̂ε′ ˙̂ε− ˙̂ε∗′ ˙̂ε∗

˙̂ε∗′ ˙̂ε∗
N(T − 1−K)

(N − 1)(K + 1)
(7)
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A Test of Poolability

The Last Word

Imposing the restriction δi = δ, regardless if it is true or not,
will reduce the variance of the pooled OLS estimator at the
expense of introducing bias (due to misspecification)

Toro-Vizcarrondo and Wallace (1968) noted “if one is willing
to accept some bias in trade for a reduction in variance,
. . . one might prefer the restricted estimator.”

See Baltagi (1995) for simulations results that explore the
gains and losses in mean squared error relating to the pooling
issue
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A Test of Poolability

The Random Effects Framework

Testing for poolability in the random effects framework is
different than the fixed effects framework

Here the test is not about differences in parameters across
individuals, but the presence of serial correlation

Recall that in the random effects framework that
corr(εit, εis) = σ2c/(σ

2
c + σ2ε) for t 6= s

Thus, if we are in the random effects framework and we are
testing the suitability of the pooled panel data model, we need
to concern ourselves with serial correlation in the error term
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A Test of Poolability

The Random Effects Framework

If the assumptions for the random effects framework to be
valid are true but there does not exist an unobserved effect
then pooled OLS is efficient

Statistically, this is equivalent to testing H0 : σ2c = 0

We can effectively ignore the panel structure of the data when
testing this assumption given that under the null hypothesis
the data can be treated as a pooled cross section

A common test statistic for AR(1) serial correlation (in the
time series setting) is to regress the residuals, ε̂t on the lagged
residuals ε̂t−1 and perform a standard t-test on the coefficient
on the lagged residuals

We can follow the same procedure here, except we must
account for both individuals and time
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A Test of Poolability

The Random Effects Framework

Formally, our test statistic can be formed by scaling the
estimate of the variance of the unobserved effects

N−1/2
N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is (8)

We only scale by N here instead of NT since our working
assumption is that N −→∞ while T is fixed

Regardless of the distribution of ε, this scaled variance
estimator has a limiting normal distribution with variance

E

[
T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

]2
(9)
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A Test of Poolability

The Random Effects Framework

This suggests the test statistic

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is[
N∑
i=1

(
T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

)2
]1/2 (10)

This test statistic has an asymptotically normal distribution

Note that you will always reject the null hypothesis when the
variance estimate of σ2c is negative because the alternative
hypothesis is one-sided; it makes no sense in this setting to
have a two-sided hypothesis
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A Test of Poolability

The Random Effects Framework

When implementing this test in practice it will not be
uncommon to reject H0

The reason for this is that under the random effects
framework, xit is prevented from containing lagged dependent
variables and this test detects myriad forms of serial
correlation, not just the presence of the random effect

Thus a rejection of the null should not be taken to mean the
random effects framework is correct

A more appropriate test for serial correlation should be based
purely on the error term, ignoring the unobserved effect,
however, this is not a test of the presence of the unobserved
effect so we discuss this later
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The Hausman Test

The key distinction between the fixed and random effects
frameworks is the working assumption of E[ci|xit] = E[ci] for
all t

It is important to test this assumption to ensure that the
proper framework is exploited during estimation of the
unobserved effects model

Hausman (1978) proposed a test based upon a weighted
squared difference statistic
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The Hausman Test

The Hausman test we will develop here will be used
specifically for testing between the fixed and random effects
framework

However, this style of test works in other settings and we will
discuss this intuition as well
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The Hausman Test

The null hypothesis is that the random effects specification is
appropriate

Notice that the fixed effects estimator is consistent when ci
and xit are correlated, which includes 0

The random effects estimator is consistent only when ci and
xit are uncorrelated

Thus, under H0 : both estimators are consistent; this is the
key piece of information that Hausman (1978) exploited to
construct a test between these two frameworks
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The Hausman Test

A rejection of the null hypothesis is taken as evidence against
the assumption that E[ci|xit] = E[ci]

The test still requires that
E[εit|xi1, xi2, . . . , xiT ] = E[εit] = 0, strict exogeneity of the
covariates

If this assumption fails then the estimators for the fixed and
random effects frameworks are inconsistent and the test is
uninformative
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The Hausman Test

Caveat Emptor: we must be careful to consider which
coefficient estimates we can compare

The fixed effects framework only allows identification of
time-varying explanatory variables whereas the random effects
framework allows identification of time-constant explanatory
variables

Further, we cannot compare coefficients on pure time effects
either!

The comparison is on variables that vary at both the
individual and time level
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The Hausman Test

Hausman’s test between the fixed and random effects
framework is based on the difference in the estimates across
the two frameworks

Under the random effects framework our estimator is β̂GLS

while under the fixed effects framework our estimator is β̃

Consider q̂1 = β̂GLS − β̃
The Hausman test has the equivalent null hypothesis
H0 : q1 = 0
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The Hausman Test

Constructing the Test Statistic

To build an appropriate test statistic we will need to derive
the variance-covariance of q̂1

Recall that β̂GLS = β +
(
X ′Ω−1X

)−1
X ′Ω−1ε and

β̃ = β + (X ′QX)−1X ′Qε

We have

E[q̂1] =E
[(
X ′Ω−1X

)−1
X ′Ω−1ε−

(
X ′QX

)−1
X ′Qε

]
=E

[((
X ′Ω−1X

)−1
X ′Ω−1 −

(
X ′QX

)−1
X ′Q

)
ε
]

=E
[
E
[((

X ′Ω−1X
)−1

X ′Ω−1 −
(
X ′QX

)−1
X ′Q

)
ε|X

]]
=E

[((
X ′Ω−1X

)−1
X ′Ω−1 −

(
X ′QX

)−1
X ′Q

)
E [ε|X]

]
=0
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The Hausman Test

Constructing the Test Statistic

The variance-covariance matrix of q̂1 is

V ar(q̂1) =V ar(β̂GLS) + V ar(β̃)− 2Cov(β̂GLS , β̃)

=
(
X ′Ω−1X

)−1
+ σ2ε

(
X ′QX

)−1 − 2Cov(β̂GLS , β̃)

We have that

Cov(β̂GLS , β̃) =E
[(
X ′Ω−1X

)−1
X ′Ω−1εε′QX

(
X ′QX

)−1]
=
(
X ′Ω−1X

)−1
X ′Ω−1E

[
εε′|X

]
QX

(
X ′QX

)−1
=
(
X ′Ω−1X

)−1
X ′Ω−1ΩQX

(
X ′QX

)−1
=
(
X ′Ω−1X

)−1
X ′QX

(
X ′QX

)−1
=
(
X ′Ω−1X

)−1
= V ar(β̂GLS)
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The Hausman Test

Constructing the Test Statistic

Using all of these pieces we have

V ar(q̂1) =
(
X ′Ω−1X

)−1
+ σ2ε

(
X ′QX

)−1 − 2Cov(β̂GLS , β̃)

=
(
X ′Ω−1X

)−1
+ σ2ε

(
X ′QX

)−1 − 2
(
X ′Ω−1X

)−1
=σ2ε

(
X ′QX

)−1 − (X ′Ω−1X)−1 (11)

The Hausman test statistic is given by

H = q̂′1

(
̂V ar(q̂1)

)−1
q̂1 (12)

Hausman (1978) showed that H ∼ χ2
K
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The Hausman Test

Constructing the Test Statistic

Given that Ω contains σ2ε it is necessary to use the same
estimate of σ2ε that appears in both Ω and the
variance-covariance matrix of β̃

The reason for this is that if one uses different estimates for
σ2ε , there is no guarantee that ̂V ar(q̂1) will be positive
definite, resulting in a negative test statistic
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The Hausman Test

Some Intuition

The Hausman test can be recast as an omitted variable test

The intuition here is that the unobserved effect is not
adequately captured in the random effects framework and so
its inclusion leads to more variation in y being explained

Consider the following regression

y̌ = X̌β +QXδ + ω, (13)

where the ž contains elements žit = zit − θz̄i· and ω is an
IID error term

The Hausman test is equivalent to testing H0 : δ = 0
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The Hausman Test

Some Intuition

Why does this work this way?

If δ = 0 then we have the regression of y̌ on X̌ which will
produce the GLS estimator under the random effects
framework as we discussed in Lecture 4

QX has typical elements x̃it = xit − x̄i·
δ captures the further impact of time-demeaning that may be
missed in the random effects framework

To see this note that

x̃it = x̌it − (1− θ)x̄i· (14)

Thus, the inclusion of both x̌ and x̃ captures all aspects of
time demeaning
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The Hausman Test

Some Intuition

What does the test statistic look like from this regression?

The Hausman test statistic from regression (13) is

H = δ̂′
[
V̂ ar(δ̂)

]−1
δ̂ (15)

An interesting aspect of (13) is that one can show using
either partitioned regression or the Frisch-Waugh-Lovell
theorem that

δ̂ = β̃ − β̂Between (16)
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The Hausman Test

Some Intuition

It also can be shown that

V ar(δ̂) = V ar(β̃) + V ar(β̂Between) (17)

It may not be apparent but the Hausman statistics in (12)
and (15) are identical

Recall from Lecture 4 that we decomposed the random effects
estimator as

β̂GLS = W1β̃ + (I −W1)β̂Between (18)

Thus, q̂1 = β̂GLS − β̃ = (I −W1)
(
β̃ − β̂Between

)
= Γδ̂,

where Γ is invertible
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The Hausman Test

Some Intuition

This yields the following equivalence:

H = q̂′1

(
̂V ar(q̂1)

)−1
q̂1 =δ̂′Γ′

(
Γ′V̂ ar(δ̂)Γ

)−1
Γδ̂

=δ̂′
(
V̂ ar(δ̂)

)−1
δ̂ = H
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The Hausman Test

Some Intuition

The appeal of using the specification in (15) is that it is easier
to construct a Hausman test that is robust to unspecified
heteroskedasticity and serial correlation

Recall that the Hausman test as derived in (15) has the
working assumption that the error terms, ε are IID, if this
assumption fails then the Hausman test is no longer valid
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The Hausman Test

Empirical Performance

Failing to reject the Hausman test should not directly be
taken to imply that the random effects framework is
appropriate for the unobserved effects model

Baltagi and Griffin (1983) show that omitted dynamics can
impact the Hausman test

Amini, Delgado, Henderson and Parmeter (2012) provide
detailed evidence that neglected nonlinearities can cause size
distortions in the Hausman test
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The Hausman Test

Empirical Performance

Guggenberger (2010) develops a pre-test bias theory for the
use of the Hausman test prior to standard specification test

That is, it is common to estimate the unobserved effects
model under both the fixed and random effects framework and
then perform a Hausman test to determine which is more
appropriate

From there standard empirical practice is carried out: model
evaluation, specification testing, significance testing, etc.

Guggenberger’s results suggest this approach will be
misleading

The Hausman test (even when H0 : is correct) will suggest
the wrong model sometimes (based on the size of the model)

His suggestion is to base standard statistical significance off of
the fixed effects framework given that this model is consistent
under both frameworks
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Highlights from this Lecture

Two tests unique to panel data are the test of poolability and
the Hausman test

The poolability test is a special version of the Chow test

The Hausman test is a test for neglected time constant
impacts

Failure to reject either hypothesis needs to be considered
carefully against the underlying assumptions of the
unobserved effects model
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