Applied Panel Data Analysis - Lecture 3

Christopher F. Parmeter

AGRODEP

September 9-13 ${ }^{\text {th }}, 2013$
Dakar, Senegal

- Cover estimation of the unobserved effect model under the fixed effects framework
- Develop intuition for how within estimator works
- Discuss why strict exogeneity is needed for the covariates
- Our last lecture paid careful attention to the unobserved effects panel data model
- To begin our discussion we will focus on building an estimator for the fixed effects framework
- Recall that with the fixed effects framework we are assuming that $\operatorname{Cov}\left(x_{i} t, c_{i}\right) \neq 0$
- Once again, the unobserved effects model with individual, time constant heterogeneity is

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+c_{i}+\varepsilon_{i t} \tag{1}
\end{equation*}
$$

- We discussed an example in the previous lecture on removing c_{i} by differencing between two time periods
- A natural question is "When we have more than two time periods which period should we difference with?"
- We could difference with $x_{i 1}$ always or we could difference with $x_{i t-1}$ or $x_{i t-2}$ (though in this case you would unnecessarily lose observations)
- An alternative to deciding how to difference is to use time averaging
- Notice that $\bar{c}_{i}=T^{-1} \sum_{t=1}^{T} c_{i}=c_{i}$
- So if we time average each variable, for each individual, we could then difference and c_{i} would be eliminated
- We will use the notation \bar{z}_{i}. $=T^{-1} \sum_{t=1}^{T} z_{i t}$ where z could be either y, ε or one of our x variables
- Our time averaged version of the unobserved effects model becomes

$$
\begin{equation*}
\bar{y}_{i .}=\bar{x}_{i .}^{\prime} \beta+c_{i}+\bar{\varepsilon}_{i} . \tag{2}
\end{equation*}
$$

- Subtracting (2) from (1) yields

$$
\begin{align*}
y_{i t}-\bar{y}_{i .} & =\left(x_{i t}-\bar{x}_{i .}\right)^{\prime} \beta+c_{i}-c_{i}+\varepsilon_{i t}-\bar{\varepsilon}_{i} . \\
& =\left(x_{i t}-\bar{x}_{i .}\right)^{\prime} \beta+\varepsilon_{i t}-\bar{\varepsilon}_{i} . \tag{3}
\end{align*}
$$

- Notice from (3) that c_{i} is no longer present
- This suggests if we run the regression of time demeaned y on time demeaned x we can recover an estimate of β
- Now this setup might appear cumbersome because we have to calculate \bar{y}_{i}. and \bar{x}_{i}. for each individual
- With a large micro panel this can quickly get expensive
- An alternative way to think about the unobserved effects model assuming nonzero correlation is that c_{i} represents a unique intercept for each individual
- Instead of a common intercept for all individuals, here each individual has a (potentially) different starting point
- A model where there are different intercepts should be familiar to you
- Consider a wage regression with a dummy variable for gender
- Consider production function estimation with a dummy variable for old and young farmers
- Consider a profit model with a dummy variable for public and private companies
- Notice that in each example the model contained a dummy variable that split the sample into two groups
- Here we have a dummy variable that splits our sample into N groups, one for each individual
- Lets collect this set of N dummy variables into a matrix called C
- What does C look like?
- C is an $N T \times T$ matrix that can be written as $I_{N} \otimes \imath_{T}$ where I_{N} is the $N \times N$ identify matrix and \imath_{T} is a $T \times 1$ vector of all ones
- The symbol \otimes stands for the Kronecker product
- The Kronecker product may be unfamiliar to you so lets have a brief review
- For A, an $m \times r$ matrix, and B a $p \times q$ matrix, $A \otimes B$ is a $m p \times r q$ matrix

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 r} B \tag{4}\\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m r} B
\end{array}\right]
$$

- Notice that the Kronecker product does not require A and B to be conformable as would be necessary with standard matrix multiplication and addition
- Some basic properties of the Kronecker product that we will use are:
- $(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}$
- $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$
- $(A \otimes B)(D \otimes F)=A D \otimes B F$
- There are many other associative, bilinearity and commutative properties, but they will not appear in our discussion
- We will define several additional matrices that will help us to succinctly formulate the estimator for the unobserved effects model
- Let y denote the $N T \times 1$ vector of regressands, ε denote the $N T \times 1$ vector of error terms and X denote the $N T \times K$ vector of regressors
- Define $P=C\left(C^{\prime} C\right)^{-1} C^{\prime}$ and $Q=I_{N T}-P$
- P and Q will be important in our construction of an estimator for the unobserved effects model
- Note that we can provide a more intuitive characterization of P by using its formal definition

$$
\begin{align*}
P & =C\left(C^{\prime} C\right)^{-1} C^{\prime} \\
& =\left(I_{N} \otimes \imath_{T}\right)\left(\left(I_{N} \otimes \imath_{T}\right)^{\prime} I_{N} \otimes \imath_{T}\right)^{-1}\left(I_{N} \otimes \imath_{T}\right)^{\prime} \\
& =\left(I_{N} \otimes \imath_{T}\right)\left(I_{N} \otimes \imath_{T}^{\prime} \imath_{T}\right)^{-1}\left(I_{N} \otimes \imath_{T}^{\prime}\right) \\
& =\left(I_{N} \otimes \imath_{T}\right)\left(I_{N} \otimes T\right)^{-1}\left(I_{N} \otimes \imath_{T}^{\prime}\right) \\
& =\left(I_{N} \otimes \imath_{T}\right)\left(I_{N} \otimes T^{-1}\right)\left(I_{N} \otimes \imath_{T}^{\prime}\right) \\
& =I_{N} \otimes \imath_{T} \imath_{T}^{\prime} T^{-1} \\
& =I_{N} \otimes T^{-1} J_{T}=I_{N} \otimes \bar{J}_{T} \tag{5}
\end{align*}
$$

- Here J_{T} is a $T \times T$ matrix of all ones and \bar{J}_{T} is a $T \times T$ matrix where each element is T^{-1}
- Notice that

$$
P z=\bar{z}=(\underbrace{z_{1}, \ldots, z_{1}}_{T \text { times }}, \underbrace{z_{2} \ldots, z_{2}}_{T \text { times }}, \ldots, \ldots, \underbrace{z_{N \cdot}, \ldots, z_{N .}}_{T \text { times }})
$$

- We also have $Q z=z-P z$ will demean each variable
- It is useful to point out that $Q^{\prime}=Q, P^{\prime}=P, Q Q=Q$ and $P P=P$
- In words, both Q and P are symmetric and idempotent
- Further $Q P=0$ and $Q+P=I_{N T}$
- Now, rewrite our unobserved effects model in (1) in matrix form as

$$
\begin{equation*}
y=X \beta+C \alpha+\varepsilon \tag{6}
\end{equation*}
$$

- Premultiplication of (6) by Q (remember we want to time demean) yields

$$
\begin{align*}
Q y & =Q X \beta+Q C \alpha+Q \varepsilon \\
& =Q X \beta+Q \varepsilon \tag{7}
\end{align*}
$$

- The presence of C has disappeared given that since Q demeans, and C is time constant, then demeaning a constant yields 0
- If we were to use the notation $\tilde{z}=Q z$, then (7) can be succinctly written as

$$
\begin{equation*}
\tilde{y}=\tilde{X} \beta+\tilde{\varepsilon} \tag{8}
\end{equation*}
$$

- The elegance of (8) is that aside from the awkward $\tilde{\varepsilon}$ this looks like a standard OLS regression of \tilde{y} on \tilde{X}
- If $E\left(\varepsilon \varepsilon^{\prime} \mid X, C\right)=\sigma^{2} I_{N T}$, then $E\left(\tilde{\varepsilon} \tilde{\varepsilon}^{\prime} \mid X\right)=\sigma^{2} Q \neq \sigma_{N T}^{2}$
- Thus, a generalized least squares estimator will be appropriate
- Remember that even though we are estimating β from (8) we must interpret β from (7)
- Our estimator for β that controls for the unobserved, fixed individual heterogeneity is

$$
\begin{equation*}
\tilde{\beta}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} \tilde{y} \tag{9}
\end{equation*}
$$

- Standard results also yield

$$
\begin{equation*}
\operatorname{Var}(\tilde{\beta})=\sigma^{2}\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tag{10}
\end{equation*}
$$

- An estimator for σ^{2} is

$$
\begin{equation*}
\widehat{\sigma}^{2}=(N(T-1)-K)^{-1} \hat{\tilde{\varepsilon}} \hat{\tilde{\varepsilon}} \tag{11}
\end{equation*}
$$

where $\hat{\tilde{\varepsilon}}=\tilde{y}-\tilde{X} \tilde{\beta}$

- The unobservable individual effects can be recovered as

$$
\begin{equation*}
\tilde{c}=P y-P X \tilde{\beta} \tag{12}
\end{equation*}
$$

- That is, $\tilde{c}_{i}=\bar{y}_{i} .-x_{i}^{\prime} \beta$
- The matrix of dummy variables C has prompted $\tilde{\beta}$ to be referred to as the least squares dummy variable estimator (LSDV)
- The more common parlance is to refer to $\tilde{\beta}$ as the within estimator or the fixed effects estimator
- What is the intuition for how the LSDV/within estimator works?
- β is identified off of variation across individual variation over time
- Recall the pooled OLS estimator identifies β off of variation in the covariates in general
- Consider the simple unobserved effects model with a single covariate

$$
\begin{equation*}
y_{i t}=\beta x_{i t}+c_{i}+\varepsilon_{i t} \tag{13}
\end{equation*}
$$

- The pooled OLS estimator (ignoring c_{i}) produces

$$
\hat{\beta}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(y_{i t}-\bar{y}\right)\left(x_{i t}-\bar{x}\right)}{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(x_{i t}-\bar{x}\right)^{2}}
$$

- Whereas the within estimator produces

$$
\tilde{\beta}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(y_{i t}-\bar{y}_{i} .\right)\left(x_{i t}-\bar{x}_{i .}\right)}{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(x_{i t}-\bar{x}_{i .}\right)^{2}}
$$

- It should be clear that the pooled OLS estimator is based on the overall variation in y and x
- The within estimator is based completely off of individual specific variation
- What does this mean?
- We need within individual variation of the covariates to produce an estimator that has meaning
- Sometimes you will hear/read that "identification is off of individual specific variation"
- For large micro panels you would always want to use the within estimator as opposed to directly estimating (6)
- The reason for this is the fact that instead of inverting a $K \times K$ matrix (which is easy) you would be inverting an $(N+K) \times(N+K)$ matrix (which is not easy when N is large)
- Note also that if you have any elements in X that are time constant, that Q eliminates them
- This is the same issue we discussed in lecture 2 when we introduced c_{i}
- We cannot separate c_{i} (which is time constant) from another, observable time constant variable
- Note that time constant here means a variable is constant across time for all individuals; it is fine to have a variable which varies for some individuals and is constant for others
- For the fixed effects estimator to be consistent we need strict exogeneity conditional on the unobserved effect, $E\left(\varepsilon_{i t} \mid x_{i} s, c_{i}\right)=0, s=1, \ldots, T$
- Given the time averaging that we use to eliminate c_{i} relaxing this assumption would not ensure that x and ε are uncorrelated for a given individual, a necessary condition to have both an unbiased and consistent estimator
- We also want to think about T being fixed and $N \longrightarrow \infty$
- The estimator for the unobserved effects is inconsistent as $N \longrightarrow \infty$
- Why? As N grows larger, we have more unobserved effects to estimate
- This is known as the incidental parameters problem (see Lancaster, 2000)
- We need $T \longrightarrow \infty$ for the estimator of the unobserved effects to be consistent
- We have seen that one unfortunate consequence with the inclusion of time constant individual specific unobservable effects is that we cannot recover the impact of observable time constant individual specific effects
- However, we can discern if the impact of these observable time constant variables has changed over time
- We do this by interacting our time constant variables with time period dummy variables
- Let the matrix D_{T} denote $\imath_{N} \otimes I_{T-1}$, the matrix of time period effects (only for T_{1}); further partition our matrix of covariates so that the time constant variables are collected separately as Z, where Z is $N(T-1) \times K_{z}$
- Then, instead of including Z in our unobserved effects model, we include $D_{T} Z$
- Our new model is

$$
\begin{equation*}
y=X \beta+\left(D_{T} Z\right) \gamma+C \alpha+\varepsilon \tag{14}
\end{equation*}
$$

- Given that the elements of $D_{T} Z$ vary over individual and time, when we premultiply by Q to remove C, Z will still appear in the model
- Now, we must be careful because $\gamma_{j t}$ does not represent the effect of $Z_{i j}$ on y, rather it is the effect of $Z_{i j}$ on y in period t relative to the baseline period
- In our setup the baseline period is the last period, period T
- Thus, we can estimate how a particular time constant variable's impact is changing over time
- The variance-covariance of $\tilde{\beta}$ in (10) is incorrect if the assumption of a constant conditional variance
- This assumption could fail if we have time specific heteroskedasticity, if there is classic heteroskedasticity, or if there is serial correlation in the error terms (this is important with a moderately sized T)
- Can use the insights of White (1980) to construct a variance-covariance estimator for β that is robust to all forms of heteroskedasticity and auto-correlation
- Following Arellano (1987) use \tilde{X} and $\hat{\tilde{\varepsilon}}$ in place of X and $\hat{\varepsilon}$ in the standard formula for constructing a robust variance-covariance estimator for the pooled estimator
- Recall the sandwich form of the variance-covariance estimator ($A^{-1} B A^{-1}$) from Lecture 1, which yields

$$
\begin{equation*}
\operatorname{Var}(\tilde{\beta})=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1}\left[\sum_{i=1}^{N} \tilde{X}_{i}^{\prime} \hat{\tilde{\varepsilon}}_{i} \hat{\tilde{\varepsilon}}_{i}^{\prime} \tilde{X}_{i}\right]\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tag{15}
\end{equation*}
$$

- Notice this allows for arbitrary heteroskedasticity across individuals and serial correlation amongst the errors terms within an individual; still restricts errors across individuals to be independent
- Developed the intuition for the within estimator of the unobserved effects panel data model when we assumed a fixed effects specification
- Need $N \longrightarrow \infty$ for consistency of the estimator
- Time demeaning eliminates the unobserved individual effect
- Incidental parameters problem requires $T \longrightarrow \infty$ for consistent estimation of these unobserved, individual specific effects

