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Overview

We discussed estimation of the unobserved effects model from
the standpoint of the conditional mean

Conditional mean cannot inform us on the shape of the
conditional density of y

Can use a conditional quantile approach

Recent research proposes a simple, two-step approach to
estimate conditional quantiles of the unobserved effects model
in the fixed effects framework
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Basic Framework

Consider the standard unobserved effects model

yit = x′itβ + ci + εit (1)

Estimation of this model precedes by imposing a conditional
mean assumption on ε, such as E[εit|xis] = 0, ∀s (strict
exogeneity)

However, we can think more generally about the unobserved
effects model by focusing on quantiles of the conditional
distribution
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Basic Framework

Consider an unobserved effects model for the τ th quantile

yit = x′itβ(τ) + ci(τ) + εit(τ) (2)

where the following quantile restriction holds Qεit(τ |xis) = 0
∀s
Rosen (2009) showed that this conditional quantile restriction
is not enough to identify β(τ)

Assuming ci is a pure location shift, i.e. does not depend on
τ , Canay (2011) proposes a simple estimator for β(τ)

If c is quantile specific, direct first differencing or a within
transformation will not work, this is because the quantile
operator is not linear as is the expectations operator
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Basic Framework

Fixed Across Quantile Effects

Canay’s (2011) quantile estimator for fixed ci across the
quantiles requires two steps

The first step is to obtain a consistent estimator for the ci,
this can be done using the standard within estimator

The second step is to run a pooled quantile regression of
ÿit = yit − ĉi on xit to obtain β̂(τ)

The estimator works because given that ci is fixed across
quantiles, that means it is also fixed at the mean, and so the
first step helps to obtain a consistent estimator of it that can
then be used to remove it from the unobserved effects model

Koenker (2004) proposes a penalized estimator for β(τ)
keeping ci fixed across quantiles, but this involves selecting a
penalty parameter which may not be ideal
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Basic Framework

Fixed Across Quantile Effects

Canay (2011) proves that β̂(τ) converges to a mean-zero
Gaussian process, however, the limiting covariance function of
this Gaussian process is quite complicated

Thus, a standard wild bootstrap is recommended to conduct
inference for β̂(τ)



APDE

Basic Framework

Fixed Across Quantile Effects

Wild bootstrap standard errors would be constructed as
1 Estimate β(τ) and ci using Canay’s two step approach
2 For a resample

{
(y∗11, ε̂

∗
11), . . . , (y∗NTN

, ε̂∗NTN
)
}

using the wild
bootstrap for each individual

3 Obtain estimates β̂∗
s (τ) using the two step approach

4 Repeat steps 2 and 3 B times

5 Reject H0 : at the α level if tj > zBα/2 where tj =
β̂j(τ)−βo

j

s.e.(β̂j,B)
and

s.e.(β̂j,B) =

(
1

B − 1

B∑
s=1

(
β̂∗
j,s(τ)− ¯̂

β∗
j (τ)

)2)1/2

where
¯̂
β(τ)∗j = B−1

B∑
s=1

β̂∗
j,s(τ)
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Basic Framework

Quantile Specific Individual Effects

Flores, Flores-Lagunes and Kapetanakis (2013) suggest a
two-way quantile panel estimator where both the individual
and time effects vary across quantiles

In their application, estimation of a Kuznet’s curve, they
argue that these individual and time effects should vary across
quantiles, thus Canay’s estimator will not work

They note “. . . it is likely that the factors accounted for by the
state and year fixed effects will have a different impact at
different quantiles of the conditional distribution of pollution.
For instance, the effects of factors like fossil fuel availability
and tastes in the case of state fixed effects are likely to be
different at different levels of emissions . . . ”
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Basic Framework

Quantile Specific Individual Effects

Flores, Flores-Lagunes and Kapetanakis (2013) allow both
time and individual effects to vary across quantiles by brute
force minimization of

min
c(τ),d(τ),β(τ)

N∑
i=1

T∑
t=1

ρτ
(
yit − ci(τ)− dt(τ)− x′itβ(τ)

)
(3)

where ρτ (z) = z (τ − 1 {z < 0}) is the classic check function
of Koenker and Basset (1978)
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Basic Framework

Quantile Specific Individual Effects

There are a few important methodological issues with the
approach of Flores, Flores-Lagunes and Kapetanakis (2013)

First, when one estimates quantiles in the above fashion they
may cross, which is theoretically inconsistent

Second, N −→∞ is required for d̂(τ) to be consistently
estimated and T −→∞ is required for ĉ(τ) to be consistently
estimated

It is likely that substantial finite sample biases will exist for
both ĉ(τ) and d̂(τ) for moderately sized samples, bias
correction methods may be required

Flores, Flores-Lagunes and Kapetanakis (2013) do not study
the asymptotic properties of their estimator but recommend
inference be conducted using the bootstrap of Maasoumi and
Millimet (2005) and Kato, Galvao and Montes-Rojas (2010)



APDE

Basic Framework

Highlights from this Lecture

Quantile estimation for the fixed effects framework of the
unobserved effects model hinges on how one vies the
individual and time effects

When the individual effects are constant across quantiles
Canay (2011) proposes a simple two-step estimator

Minimization estimators exist that allow individual effects to
vary across quantiles, can be troublesome when N is large

As Koenker (2004, pg. 76) acknowledges “At best we may be
able to estimate an individual specific location-shift effect,
and even this may strain credulity.”
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