
A GENTLE INTRODUCTION TO R*

CHRISTOPHER F. PARMETER

1. R You Ready for R?

1.1. What is R?. R is an implementation of the object-oriented mathematical programming lan-

guage S. The S programming environment (S stands for statistics) was developed by AT&T as the

single letter competitor to C (also developed by AT&T). R is developed by statisticians around the

world and is free software, covered by the GNU General Public License. Syntactically and func-

tionally it is very similar (if not identical) to S+, the popular statistics package. R is capable of

running high powered statistical simulations, producing elegant graphics and computing economet-

ric estimates for a wide array of popular estimators. R also has the ability to seamlessly integrate

with LATEX to construct fully reproducible scientific research.

1.2. How Can I get R?. R is open source software enabling anyone with an internet connection

to instantly download it to your computer and begin working. The easiest place to find R is through

its host website The R Project, see Figure 1. Once you have navigated to The R Project webpage

seek out the CRAN link on the left hand side. The CRAN tab will then ask you to select a mirror

which hosts R, see Figure 2. For this introduction I have elected to use the CRAN link through the

University of California, Berkeley. R is supported on Linux, Mac OS/X and Windows operating

systems. Depending upon your operating system you will need to select the appropriate link to

begin the process of installing R on your computer see Figure 3. Figures 4 and 5 show this for a

Mac OS/X operating system where I have selected the link for R-3.0.1.pkg.

Once you have the R binaries downloaded onto your computer you will want to install it onto

your computer. Once your have R installed on your machine its time to let R rip!

1.3. Why Use R?. There are a multitude of reasons for using R (see Racine & Hyndman 2002).

I will only list several of the advantageous features that make R so appealing to applied economists

and statisticians alike.

• Comparable in power to commercial products,

• Effective data handling and storage facility,

• Large collection of integrated intermediate tools for data analysis,
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Figure 1. The R Project Home Page

• General object-oriented programming language, allowing you to construct your own statis-

tical functions,

• R is polymorphic – same function can be applied to different objects with tailored results,

• Links with Sweave to produce fully replicable research,

• Its Free,

• Its Free!

Don’t be turned off by the fact that R is an object-oriented language. In this instance this is

wonderful for the analyst since you have the ability to implement an estimator or test which cur-

rently does not exist using base calls within R. An appeal of using any object-oriented programming

language is that programming is much easier for the user. R is polymorphic. This means that the

same function called within an R session can be used on different objects and different results are

calculated based on the type of object passed to the function. A further benefit of constructing

objects is that your thought process for instructing R what to do is enhanced. When you run a

regression in SAS, for example, a litany of results is spewed onto the screen and it can be confusing

to find what you need. With an object-oriented language the regression call returns an object
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Figure 2. Selecting the Mirror on CRAN

(meaning nothing is actually printed on your screen) and this objects holds the results of interest,

estimates, standard errors, R2, p-values, etc. The user then decides which pieces of the object to

use.
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Figure 3. The Initial Download Page



R INTRO 5

Figure 4. Downloading for a Mac OS/X Operating System
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Figure 5. Starting the Download
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2. Getting Up and Running

2.1. Just Getting R Started. Once R is installed successfully on your machine you will want to

click on the R icon to launch the GUI (Figure 6). This will launch the R console which is shown in

Figure 7.

Figure 6. The R Icon

Figure 7. The R Console
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2.2. An R Session. Having installed and run R you will find yourself at the > prompt. Prior

to discussing the crucial details of running a statistical analysis in R lets focus on some necessary

heuristics.There are two main platforms to run R code in an R session. First you can simply type

commands at the command prompt. Alternatively, you can open a separate R document, a .R file,

write all of you code and comments in there (similar to a .do file in Stata), and then compile this

document in the R console. I would recommend always saving your R code in a separate document

as opposed to running code directly in the R console.

Figure 8. A separate file to write all your R code.

From now on I will be describing operating R from the GUI and will use ‘Console’ to describe

typing in the main R console that opens up when you launch R and a separate ‘R file’ which you

can write your own code to and save.

2.3. Packages. To conduct statistical analysis one will need to make use of ‘packages’. R’s func-

tionality is entirely based on the concept of packages and each package is a collection of functions

which are designed to carry out specific tasks, much the same way that toolboxes operate in Matlab

or modules in Gauss. Your installation of R resulted in the base package being installed. While
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there are numerous functions which one can evoke within the base package, additional packages

are needed to perform a variety of econometric operations, for example, to estimate panel data

models we will want to use the plm package. These additional packages are commonly referred to

as ‘recommended’ or contributed packages since members of the R community have graciously done

the dirty work to construct functions that we desire to deploy.

Installing packages in R is easy and the R project homepage allows you to connect to the ever

growing collection of contributed packages. Currently there are over 4738 contributed packages

available. While it may seem a daunting task to parse through the numerous packages available to

find just the right set of functions, R offers two accessible avenues to find packages most relevant

to your empirical work. First, groups of thematic packages have been collected into ‘Task Views’

amongst them the Econometrics Task View which will install more than 50 packages which perform

a range of econometric methods. In an interesting pedagogical twist, to install any of the ‘Task

Views’ one needs to install the ctv package. This can be installed directly from the R console with

the following code:

> install.packages("ctv")

Once the ctv package has been installed in must be enabled in the current R session to load

‘Task Views’. This can be done with the library() command. If this is your first time installing

R, or if you have recently updated R, the following views will load a majority of the packages you

are likely to require for your empirical work. Installing these packages will take a few minutes.

> library("ctv")

> install.views("Econometrics")

> install.views("Cluster")

> install.views("Distributions")

> install.views("Graphics")

> install.views("HighPerformanceComputing")

> install.views("Optimization")

> install.views("Robust")

> install.views("ReproducibleResearch")

> install.views("TimeSeries")

> install.views("Survival")

> install.views("SocialSciences")

> install.views("Spatial")

Anytime you update R or install it on another computer you will need to reload all of the

contributed packages which you had previously installed. After installing these packages, or views,

you can update them at any point by typing

> update.packages()

> update.views("Econometrics")
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If you desire to load a package not linked with one of the views you can do this with a simple

call. For example, if I wanted to load the plm package which contains commands for a range of

estimation and inference across myriad panel models I would type

> install.packages(plm)

2.4. Getting Help in R.

2.4.1. From the Command Prompt. At some point you will most likely want to look up how to

perform a specific operation, or you will need help with a command within one of R’s packages.

Seeking help in R is very easy and there are a variety of ways to ask for help. If you know the

subject you would like help on you can use the ?? call which searches for the term following the

double question marks over all the packages you currently have installed in R. For example, if you

wanted to know all the available commands related to ‘regression’ you could type

> ??regression

Alternatively, after having searched for a subject you found a command for, such as lm(), you

could open the help file for this command by calling

> ?lm

Notice that you use ?? when you are searching for help on a topic, but you use ? to open a help file

(if one has been created) for a specific command within R. Rather than use the ?? and ? calls you

may also evoke help.start() or help.search( “foo”) where foo is a string, such as ‘regression’ or

‘variance’.

To search for help in a web browser you may use the help.start() command

> help.start()

The call to help.start() spawns your web browser where you can interactively search for help on

any topic you desire.

2.4.2. Web sites. A number of sites are devoted to helping R users, and we briefly mention a few

of them below.

http://www.R-project.org/: This is the R home page from which you can download the program

itself and many R packages. There are also manuals, other links, and facilities for joining

various R mailing lists.

http://CRAN.R-project.org/: This is the ‘Comprehensive R Archive Network,’ “a network of

ftp and web servers around the world that store identical, up-to-date, versions of code

and documentation for the R statistical package.” Packages are only put on CRAN when

they pass a rather stringent collection of quality assurance checks, and in particular are

guaranteed to build and run on standard platforms.

http://cran.r-project.org/web/views/Econometrics.html: This is the CRAN ‘task view’ for

computational econometrics. “Base R ships with a lot of functionality useful for computa-

tional econometrics, in particular in the stats package. This functionality is complemented

http://www.R-project.org/
http://CRAN.R-project.org/
http://cran.r-project.org/web/views/Econometrics.html
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by many packages on CRAN, a brief overview is given below.” This provides an excellent

summary of both parametric and nonparametric packages that exist for the R environment.

http://pj.freefaculty.org/R/Rtips.html: This site provides a large and excellent collection of

R tips.

2.4.3. The R Search Engine. An additional resource available to the R community is R Seek (Figure

9). Not only does R Seek allow you to search for help on commands and packages, but it also searches

the web for R code so that you can (potentially) track down code that has as yet to be placed on

CRAN.

Figure 9. R Seek

2.5. Importing data. R allows users to import a variety of different data sources. Within the base

package users can import ASCII/text file and comma separated files directly using the commands

read.table and read.csv, respectively. However, not all data files come in these forms and so

for other data types the foreign package allows you to read data created by different popular

programs. To load it, simply type library(foreign) from within R. Supported formats include

read.arff: Read Data from ARFF Files

read.dbf: Read a DBF File

read.dta: Read Stata Binary Files

read.epiinfo: Read Epi Info Data Files

read.mtp: Read a Minitab Portable Worksheet

read.octave: Read Octave Text Data Files

http://pj.freefaculty.org/R/Rtips.html
http://rseek.org/
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read.S: Read an S3 Binary or data.dump File

read.spss: Read an SPSS Data File

read.ssd: Obtain a Data Frame from a SAS Permanent Dataset, via read.xport

read.systat: Obtain a Data Frame from a Systat File

read.xport: Read a SAS XPORT Format Library

Moreover, the xlsx package allows you read the contents of an excel spreadsheet into an R

dataframe. Again to load this package simply type library(xlsx) from within R. To read in data

use the call read.xlsx().

The following code snippet would read a Stata file named ‘growth.dta’ and lists the names of

variables in the data frame. Further, the head() command will print the first six rows of the

dataset.

> library(foreign)

> mydat <- read.dta(file="growth.dta")

> names(mydat)

> head(mydat)

Clearly R makes it simple to migrate data from one environment to another.

2.6. Setting the Working Directory. Typically you will want R to recognize a specified location

where it should look for data, source code and to store output. This is known as the working

directory. The stock installation of R on your machine has given it a standard working directory

which you can determine by simply typing

> getwd()

If you were to attempt to import data prior to setting your working directory then R would

return an error saying that it cannot locate the file you asked for. Setting the working directory in

R is very easy. In the Console you can manually set it via

> setwd(workingdirectorylocation)

where workingdirectorylocation is the path to your working directory. Additionally, if you were

to open an R file directly (instead of from the R Console) then R will set the working directory

to the location of this file. Moreover, you can always include as the first line of code in an R file

setwd(location).

Aside from using the setwd() command within the R Console you can also use the drop down

menus available within the GUI to set your working directory.

2.7. Some Coding Preliminaries.

2.7.1. Naming. R is an expression language, and as with most UNIX based packages it is case

sensitive. This means that the symbols B and b refer to different things. All alphanumeric symbols

are allowed within the R Console along with ‘.’ and ‘ ’. For portable R code one should only use

the symbols A-Z, a-z and 0-9 to name things. R’s naming restrictions require that a variable’s
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name begin with either a letter (upper or lowercase is acceptable) or ‘.’. However, if you name a

variable beginning with the character ‘.’ the next character cannot be a digit.

2.7.2. Elementary Code. Many commands are either of the form of expressions or assignments. An

expression is a command that is evaluated, printed and the value is subsequently not stored in

memory. An expression would be of the form

> 2+2

[1] 4

An assignment uses the <- command and like an expression it is a command that is evaluated.

However, the value is not printed to the screen but stored to the variable which it is assigned to.

An assignment would be of the form

> b <- 2+2

When writing code it is common to separate commands. This can be done in two ways in R.

First, R views a newline (Enter or Return) as the beginning of a new command. Additionally, the

semi-colon (‘;’) can be used to separate commands that are written on the same line. In my own

preference I prefer never to write two commands on the same line and so I always have the newline

as my form of separating commands.

> ## Newline separating commands

> 2+2

[1] 4

> 3+3

[1] 6

> ## Semi-colon separating commands

> 2+2; 3+3

[1] 4

[1] 6

2.7.3. Commenting. To comment your code, which I highly recommend so that others can under-

stand what you have done and so that when you get revisions you can remember what you did, use

the # symbol. I like to comment as often as possible without adding unnecessary length or clutter

to my code. In principle there are two main ways to comment your code, I call them ‘Comment

and Code’ and ‘Parallel Commenting’. Examples of each style are given here

> ## Comment and Code

> ## Here I demonstrate Addition and Subtraction in R

> ## Addition

> 2+2

> ## Subtraction

> 3-2
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> ## Parallel Commenting

> ## Here I demonstrate Addition and Subtraction in R

> 2+2 ## Addition

> 3-2 ## Subtraction

Either form is acceptable and you should go with whichever fits your preferences, but always

comment regardless.

Sometimes when coding in the Console one will make simple mistakes that upon attempting to

run the code (typically by pressing enter) will result in the next line showing a ‘+’ symbol. This

symbol signifies that the previous call was not wrapped up properly. Typical reasons for this are

not including enough delimiters, such as ] or ), or forgetting to close off parentheses. For debugging

code it is common practice to write code over numerous lines using indentation to signify a single

command. This makes it easier on the eyes. When making calls to commands with numerous

controls and inputs, it is common to begin new lines using a comma ‘,’ which R will recognize as

being part of the same command.

2.7.4. Command History. If you are coding in the Console, it is common that you will make mis-

takes and have to rerun code that has some error within it. Rather than type the entire command

again, simply pressing the ‘up arrow’ on your key board will reproduce the last call in the command

history. Repeatedly pressing the up arrow will scroll through the set of commands loaded within

the command history. Once you have scrolled through the command history you can easily scroll

back down by using the ‘down arrow’ on your keyboard.

2.7.5. Executing Commands From and Diverting Output to Files. As mentioned earlier, typically

you will want to construct R code in a separate R file. To then run these codes at any point

within an R session one simply uses the source() command. If I had a set of commands named

PanelData.R then to run this in my R session (making sure this file is in the working directory) I

would use the command

> source("PanelData.R") ## Run PanelData.R

For an R session on a Windows platform there is also a drop down menu with the ‘Source’ command

that will allow you to select the R file you wish to run without it being located in your working

directory. On an Apple platform one can source code using the Command button while pressing

the E key.

To send output to a specific file use the sink() command. Keep in mind that once sink() has

been called no output will be produced on the screen until the sink has been turned off. A typical

incantation of this would be to direct output to a file called PanelData.out and then to turn the

sink off using

> sink("PanelData.out") ## Direct output to PanelData.out

> 2+2

> sink() ## Stop directing output
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2.7.6. Objects in Memory. All entities which you create in your R workspace are known as objects.

Your objects may be character strings, vectors, arrays, lists, matrices, functions or more general

structures. In your R session you can list the objects known in the workspace by typing

> objects() ## List objects in R session

> ls() ## Alternative command to list objects

You can unilaterally remove an object from the R workspace using the rm() command. Here is an

example

> b <- 2+2 ## Create an object

> objects() ## List objects in R session

[1] "b"

> rm(b) ## Remove b from workspace

> b ## Display error so that you see b was removed from memory

[1] "Error in try(b) : object 'b' not found\n"

If you wanted to remove all objects from your workspace you can simple type

> rm(list=ls())

When you finish your R session you will be asked if you would like to save all currently available

objects. If you elect to save your current session then the objects are written to a file with the

extension ‘.RData’ within the working directory while the command lines are written to a file with

the extension ‘.Rhistory’ in the working directory. The next time you open an R session from

this directory the workspace is reloaded with these objects and command lines. Be careful where

you open your R session as it is common to have variables with the same name within different

directories making it easy to overwrite things if you are not cautious. Additionally, you can eschew

saving your R workspace if your codes are quick to compute or you have an easily manageable

dataset. Or, if you are concerned that you may have objects with the same name loaded from

memory you can begin you code with rm(list=ls()).

It is also common to construct functions and variables whose names conflict with one another. A

simple mechanism to check for conflicts is the conflicts() command. This command will produce

a set of named conflicts so that you can determine if you have objects which might conflict with

R’s core operating environment. If you set detail=TRUE inside of your call to conflicts() then

the objects where the conflicts arise are also printed out.

> T <- "time" ## Create a known conflict

> conflicts() ## Check for conflicts

[1] "body<-" "kronecker" "T"

> rm(T) ## Eliminate conflicts

> conflicts(detail=TRUE) ## Check for conflicts

$`package:methods`
[1] "body<-" "kronecker"
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$`package:base`
[1] "body<-" "kronecker"

While objects() and ls() list object names in memory, if you would like more details of the

things R is currently using you can invoke the ls.str() command. Also, list.files() will list

all files in your current working directory.

3. Simple Data Manipulation

As with most matrix language software programs R allows you to create a variety of storage

objects including numbers, vectors, matrices, strings and dataframes (more on dataframes later!).

To assign a number to a variable we simply use the assignment operator

> a <- 7.2 ## Assignment of a scalar

which creates a numeric object named a with the value 7.2. Often we will be more interested in

vectors and matrices as opposed to scalars. To create a vector in R we use the c() command (which

stands for concatenation) which will create a column vector

> b <- c(a,4.3,2.4) ## Assignment of a column vector

If we wanted a row vector instead we could transpose b using t() as follows

> B <- t(b) ## Transposition

Given R’s case sensitivity b and B are distinct. We can concatenate vectors as well as scalars. For

example to concatenate by columns we can use cbind() while to concatenate by rows we can use

rbind.

> BB <- rbind(B,B) ## Row concatenation

> BB

[,1] [,2] [,3]

[1,] 7.2 4.3 2.4

[2,] 7.2 4.3 2.4

> bb <- cbind(b,c(1,2,3)) ## Column concatenation

> bb

b

[1,] 7.2 1

[2,] 4.3 2

[3,] 2.4 3

Elements of vectors and matrices are index via square brackets []. Several examples are

> b[2] ## 2nd element of b

[1] 4.3

> B[3] ## 3rd element of B

[1] 2.4
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> bb[2,] ## 2nd row of bb

b

4.3 2.0

> bb[,1] ## 1st column of bb

[1] 7.2 4.3 2.4

> BB[2,3] ## Cell 2,3 of BB

[1] 2.4

> bb[1:2,1:2] ## Cells (1,1), (1,2), (2,1) and (2,2)

b

[1,] 7.2 1

[2,] 4.3 2

The blank that accompanies the comma inside the square brackets signifies to R to use either the

whole column or row. The colon ‘:’ can be used when consecutive rows/columns are desired to pull

out of a matrix. One could also pull out non-consecutive rows/columns.

> bb[c(1,3),2] ## Pull out 1st and third row, second column elements

[1] 1 3

Matrices are added/subtracted elementwise as with textbook matrix addition. If you add two

matrices together that are not conformable R will return a matrix whose length is equal to the length

of the longest vector which occurs in the expression along with a warning message. The smaller

matrix is recycled as often as needed to match the size of the largest matrix in the expression. The

following code illustrates this

> a <- c(0,1,2) ## Create a 3x1 vector

> d <- c(a,a,2) ## Create a 7x1 vector

> f <- a+2*d+7 ## In principle we cannot add these two

> ## vectors together since they are not

> ## conformable, but R will do this

> f

[1] 7 10 13 7 10 13 11

You will notice that I have already used the * and + symbols for multiplication and addition.

Other common mathematical operators in R are listed in Table 1.

Aside from basic mathematical operations there are also a host of additional commands that work

with vectors and matrices to extract important information. If you wanted to know the length of

a vector you could use the length() command, whereas range() will return a vector composed of

the minimum and the maximum of the vector that is passed to it. Alternatively, you could simply

use min() and max() separately. min() and max() are global operators as they act on everything

that is passed into it, i.e., if I were to pass two vectors to min(), the return would be the smallest

value across both vectors. The same thing goes for max().
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Table 1. Summary of Basic Mathematical Operators in R.

Operator Mathematic Operation
+ Addition
- Subtraction
* Multiplication
/ Division
^ Power

sqrt() Square Root
exp() Exponential
log() Logarithm in Base e

log10() Logarithm in Base 10
sin() Sine
cos() Cosine
tan() Tangent
abs() Absolute Value
%% Modular Arithmetic
%/% Integer Division

> length(f) ## Return the length of the vector f

[1] 7

> range(f) ## Return the min and max of f

[1] 7 13

> max(f,(f+2)) ## max() only returns a scalar

[1] 15

To order a vector the sort() command returns a vector of the same length with the elements of

the original vector ordered from smallest to smallest. Additional sorting facilities include order()

and sort.list(). To sum the elements of a vector simply use sum() and to multiply the elements of

a vector use prod(). R also offers a range of cumulative operators. To perform cumulative addition,

multiplication, minimum and maximum calculations use the commands cumsum(), cumprod(),

cummin() and cummax()

When you are calling commands on either scalars, vectors or numbers you typically will not be

concerned if R stores your answers as an integer, a real number or a complex number. From R’s

perspective all calculations are done in double precision treating values as real numbers. Thus,

if you wanted to work with complex numbers you would need to explicitly include the complex

component of the number. For example

> sqrt(-1) ## Returns NaN along with a warning

[1] NaN

> sqrt(-1+0i) ## Conducts the operation with no issues

[1] 0+1i
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3.1. Creating Sequences. There are a number of available options to construct sequences of

numbers in R. When you are constructing your own code typically you will have sequences of

numbers, for example if you have a loop that runs over your observations this is a sequence of the

integers from 1 to n, where n is your sample size. The simplest way to construct sequences is with

the colon operator. A more precise way to construct sequences is to use the seq() command. This

command generally has three inputs, the start of the sequence, the end of the sequence and the

step length between elements in the sequence.

> 1:5 ## Simple sequence

[1] 1 2 3 4 5

> 1:5*2 ## Order of operation with colon

[1] 2 4 6 8 10

> seq(2,10,2) ## More direct way to construct sequences

[1] 2 4 6 8 10

The seq() is a good way to introduce you to the capabilities of R when calling a function.

Technically, the first element that the seq() command looks for is the from variable, the second is

the to variable and the third is the by variable. So, putting this together we tell R to construct a

sequence from a given number to another number, by taking steps of a given size. More formally

we have

> seq(from=2,to=10,by=2) ## Formal Construction

[1] 2 4 6 8 10

> seq(2,10,2) ## Quick Construction

[1] 2 4 6 8 10

Notice that they are the same. R will interpret your inputs in a specific order so that you don’t

have to remember the names of each of the inputs. What is even more interesting is that you can

send in variables with their names out of the order in which the R function is constructed

> seq(by=2,from=2,to=10) ## Ordering Backwards

[1] 2 4 6 8 10

The rep() command is related to the seq() command. rep() will construct a vector of repeated

values of the first element passed with length equal to the second value passed. An option within

rep() is each. If you specify each then each element of the first value passed (if it is a vector) is

repeated each times whereas if you do not specify each the whole vector is repeated via the number

of times passed to the rep() call.

> x <- c(1,2,3) ## Create Vector

> rep(1,5) ## Illustrate simple call to rep()

[1] 1 1 1 1 1

> rep(x,2) ## Basic rep() call with vector
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[1] 1 2 3 1 2 3

> rep(x,each=2) ## rep() using each

[1] 1 1 2 2 3 3

3.2. Constructing Logical Vectors. Not only can R construct and hold information on numbers,

it can also store logical information. This allows for easy manipulation of your data when subsetting

and constructing ifelse statements. A logical vector in R can contain the values TRUE, FALSE and

NA. The first two can be abbreviated in the R language as T and F. A common mistake is to use T

and F exclusively. However, only TRUE and FALSE are reserved words so it is very easy to overwrite

things if one only uses T and F. A logical vector is generated by a condition. An example is

> a <- c(0,1,-1,2) ## Construct vector

> b <- a >0 ## Create logical vector with condition

> b ## Print out logical vector

[1] FALSE TRUE FALSE TRUE

The condition works element wise on the vector it is assessing. The standard logical operators are

in Table 2.

Table 2. Summary of Basic Logical Operators in R.

Operator Logical Device
> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To
== Equal To
! = Not Equal To
& Intersection of Conditions
| Union of Conditions
! Negation of a Condition

A wonderful command at your disposal in R relating to logical vectors is which(). The which()

command allows you to determine the elements of a vector which satisfy a set of conditions.

> which(a<=0) ## Determine elements that are nonpositive

[1] 1 3

3.3. Character Vectors. Constructing vectors which are nonnumeric is also easy in R. These

types of vectors will be useful to you when you are plotting detailed information as well as naming

a set of variables, amongst other settings. To construct a vector that contains characters simply

use parentheses, " " around each variable.

> a <- c("Dakar", "Senegal", "AGRODEP") ## Create Vector

> a ## Print out character vector
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[1] "Dakar" "Senegal" "AGRODEP"

Mention paste() command as well

4. Data Management

So at this point I am hopeful that you are comfortable with the basics of using R. There are

many additional commands we have not covered yet, but just like learning a spoken language, it is

useful to focus on the few words you will use often and then learn more sophisticated words later on

as you become more comfortable with the language. Now, it general you will not be constructing

all of your data, rather importing it into R to engage in statistical analysis. We already mentioned

a range of options to load datasets into R’s memory banks. Here we will discuss some preliminary

methods you can use to manipulate your data.

For the example here I am going to load the famous hedonic pricing dataset of Harrision &

Rubinfeld (1978). This dataset is available in the Ecdat package (Croissant 2011) which was

loaded when you installed the Econometrics Task View.1 The summary() command is a useful

first pass to generically inspect the data you have loaded to make sure that things look appropriate.

When you call summary() the names of the variables may not be intuitive and so investigating the

help page (?Hedonic) associated with this dataset will naturally be of use.

> library(Ecdat) ## Load Ecdat Library to gain access to Hedonic Dataset

> data("Hedonic") ## Place Dataset in R's memory

> summary(Hedonic) ## Summarize Data

4.1. The data.frame() Environment. Whether you load data from outside of R or call a dataset

that belongs to a package it is important to recognize it’s type. That is, you are most likely loading

a set of numbers each with a special name. This is not how we typically think of a matrix. In fact,

from R’s perspective your data is a data.frame(). The data.frame() environment is an excellent

way to store and manage your data. Almost universally the datasets within R packages are loaded

as data.frames. If you load your data in with headers R will typically construct a data.frame out

of the data passed to it as well.

The interesting thing about the data.frame() environment is that you can have two different

datasets with variables of the same name and this will not cause confusion within R. That is,

within the Hedonic dataset there is a variable called mv which stands for the median value of owner

occupied housing in a given census tract, measured in $1000. If we create a new dataset using the

data.frame() operator, say for census tracts along the Charles river (chas==1), we could label the

median value of housing in this dataset as mv as well with no ill effects.

To access a particular variable from a data.frame() the $ operator is indispensable. Continuing

with our example, if we desired to know the minimum and maximum values of mv in our data we

can simply call

1See the spdep package (Bivand 2011) which makes several corrections to Harrision & Rubinfeld’s (1978) original
data given the issues raised by Gilley & Pace (1996).
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> range(Hedonic$mv) ## Min and max of mv

[1] 8.51719 10.81980

If instead you typed range(mv), an error would be produced (Try it!). It may seem like having

to type the name of a dataset, followed by the $ operator, followed by the name of the variable,

just to access a particular variable is a lot of work. However, a way to circumvent this is to attach

your data. By attaching your data the names of each of the variables are entered into R’s memory

which means that you can directly access variables without calling them out of the data.frame().

However, a potential issue with this is that you will overwrite variables of the same name and/or

create conflicts based on variable names. Thus, users need to be careful when attaching data.

> attach(Hedonic) ## Attach dataset

> range(mv) ## Min and max of mv

[1] 8.51719 10.81980

We can also construct variables within a data.frame() with relative ease. To do this we again

resort to the $ operator. It is common in hedonic pricing models to estimate a log-level or log-log

variant. In the Hedonic dataset we do not have the logarithm of median value owner occupied

housing. We can easily create this variable though as

> Hedonic$lmv <- log(mv) ## Construct log of mv

If you wanted direct access to lmv you would want to reattach the entire Hedonic dataset with a

call to attach() again. To remove a variable, such as the one we just created we could assign to

it the NULL value.

> Hedonic$lmv <- NULL ## Remove log of mv

4.2. Subsetting Your Data. To construct data.frames by hand there are several commands

available. First, to generically construct a data.frame() you can simply place the variables you

want inside a call to this command

> myHedonic <- data.frame(price=mv,crime=crim,pollution=nox) ## Construct new data.frame

To construct a data.frame() as a subset of an existing data.frame use the subset() command

> Charles <- subset(Hedonic,select=(chas==1)) ## Only Tracts along Charles River

> highvalue <- subset(Hedonic,mv>9.9) ## High value census tracts

> High.Charles <- subset(Hedonic, mv>=9.9 &

+ chas==1) ## Both high value and on Charles River

> No.rad <- subset(Hedonic,select=-rad) ## Remove rad variable

> Few <- subset(Hedonic,select=mv:nox) ## Alternative way to subset

Again, remember that in each of these five new data.frames that I constructed there are variables

of the same name, which is fine as long as I don’t attach each of these five datasets.
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4.2.1. Creating New Variables with replace() and ifelse(). An alternative way to construct

values, based off of subsetting your data, is to use the replace() command. Earlier I created

a subset of data based on high value homes. Alternatively, I could have created a new variable

called highval and placed that inside the Hedonic dataset to subset off of, or to use as a threshold

variable in a linear regression. I could have done this as

> Hedonic$highval <- Hedonic$mv ## Create new variable

> Hedonic$highval <- replace(Hedonic$highval, Hedonic$highval<9.9, 0) ## 0 for low value

> Hedonic$highval <- replace(Hedonic$highval, Hedonic$highval>=9.9, 1) ## 1 for high value

This example was purely for illustration. A different way to construct the same variable would have

been to the ifelse() command.

> Hedonic$highval <- ifelse(Hedonic$mv>=9.9,1,0) ## Create new variable

I listed both of these commands here to expose you to the available commands within R.

4.3. Missing Values. In general missing values for some of your variables will arise. To remedy

missing values a common approach is to drop full observations where a missing variable is present.

Since there are no missing values in the Hedonic dataset we will load a different dataset to illustrate

the handling of missing values. The AER package (Kleiber & Zeileis 2008) contains a number of

prominent datasets, amongst them the cross-country economic growth dataset of Durlauf & Johnson

(1995).

> library(AER) ## Load AER Library to gain access to GrowthDJ dataset

> data("GrowthDJ") ## Place Dataset in R's memory

> summary(GrowthDJ) ## Summarize Data

You will see that the summary() command informs you which variables have missing values and

how many. To eliminate the missing values from our dataset one simple command is na.omit().

Using this call on a data.frame will remove all rows that have at least one missing observation.

> GrowthDJ1 <- na.omit(GrowthDJ) ## Remove NAs

> summary(GrowthDJ1) ## Summarize Data

Notice how I did not rename the dataset with the same name, this is commonly bad practice since

I would need to reload the full dataset from the AER package if I wanted any information on the

rows which were dropped.

5. Matrix Algebra

Working with matrices in R is also a breeze. Assume we have a matrix A of order n× k. In R

we can define a matrix in a variety of ways. Perhaps the most straightforward approach is to use

the matrix() command. We construct a matrix as

> A <- matrix(1:10,5,2) ## Construct a 5 by 2 matrix

> A
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[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

> A <- matrix(1:10,5,2,byrow=TRUE) ## Construct a 5 by 2 matrix

> ## but fill in by row first

> A

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

[5,] 9 10

Many times when working with multiple matrices you may have a conformability issue. To check

the size of your matrix simply use

> dim(A) ## Returns number of rows and columns

[1] 5 2

> nrow(A) ## Just the number of rows

[1] 5

> ncol(A) ## Just the number of cols

[1] 2

Indexing matrices works as dicussed earlier as well as constructing logical statements surrounding

matrices

> A>=4 ## Determine which elements are at least as large as 4

[,1] [,2]

[1,] FALSE FALSE

[2,] FALSE TRUE

[3,] TRUE TRUE

[4,] TRUE TRUE

[5,] TRUE TRUE

Diagonal matrices can easily be constructed using the diag() command.

> B <- diag(1,3,3) ## Create 3 by 3 diagonal matrix

> B

[,1] [,2] [,3]

[1,] 1 0 0
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[2,] 0 1 0

[3,] 0 0 1

The calls upper.tri() and lower.tri() can be used to construct upper and lower triangular

matrices as well.

5.1. Matrix Operations. In general, operations on matrices in R work elementwise, so taking

> sin(A) ## Take sine of A

[,1] [,2]

[1,] 0.8414710 0.9092974

[2,] 0.1411200 -0.7568025

[3,] -0.9589243 -0.2794155

[4,] 0.6569866 0.9893582

[5,] 0.4121185 -0.5440211

takes the sine of each of the 10 elements. Addition and subtraction work identically to that of

scalar/vector addition discussed earlier.

> B <- matrix(31:40,5,2) ## Create Additional 5 by 2 matrix

> 0.5*A+B

[,1] [,2]

[1,] 31.5 37

[2,] 33.5 39

[3,] 35.5 41

[4,] 37.5 43

[5,] 39.5 45

Matrix multiplication works as described in a basic matrix algebra class but you cannot use the

* operator. Instead, multiplication of matrices is undertaken using %*% (inner product). In our

previous example we had that both A and B were 5× 2 matrices so clearly A ·B will not be a viable

object since the matrices do not conform for multiplication. We can transpose either of the two

matrices however to obtain something meaningful. Matrix transposition is done using t().

> t(A)%*%B ## Multiply A' by B

[,1] [,2]

[1,] 845 970

[2,] 1010 1160

> tcrossprod(A,B) ## Slightly faster way to take crossproducts

[,1] [,2] [,3] [,4] [,5]

[1,] 103 106 109 112 115

[2,] 237 244 251 258 265

[3,] 371 382 393 404 415
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[4,] 505 520 535 550 565

[5,] 639 658 677 696 715

Additional multiplication operators for matrices include calculation of the outerproduct, %o% and

the Kronecker product, %x%.

Matrix inversion is also a bit more involved. The solve() command is the operator to invert a

matrix. The det() command allows you to compute the determinant of a matrix to check if the

matrix is capable of being inverted.

> det(crossprod(A)) ## Take determinant of A'A

[1] 200

> solve(crossprod(A)) ## Inverse of A'A

[,1] [,2]

[1,] 1.10 -0.950

[2,] -0.95 0.825

> solve(t(A)%*%A) ## Check

[,1] [,2]

[1,] 1.10 -0.950

[2,] -0.95 0.825

To compute the spectral decomposition of a matrix the eigen() command is invaluable. This

command creates an object that stores the eigenvalues, $values, and eigenvectors, $vectors.

> eigen(crossprod(A)) ## Compute eigen values/vectors of A'A

$values

[1] 384.4798166 0.5201834

$vectors

[,1] [,2]

[1,] 0.6545058 -0.7560570

[2,] 0.7560570 0.6545058

6. Basic Statistics

A variety of basic statistics commands are at one’s disposal in R both within the main R setup as

well as the stats package which is automatically loaded when you open R. These include calculation

of the mean, variance, covariance, standard deviation and quantiles. A basic set of calls using these

commands for the Hedonic dataset are

> mean(nox) ## Mean of nox levels across tracts

[1] 32.1088

> sd(nox) ## Standard deviation of nox

[1] 13.92117
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> quantile(nox,c(0.25,0.75)) ## Upper and lower quantiles of nox

25% 75%

20.1601 38.9376

> IQR(nox) ## Inner quantile range of nox

[1] 18.7775

> cor(nox,mv) ## correlation b/w nox and mv

[1] -0.4964548

> mad(nox) ## Median absolute deviation of nox

[1] 13.28929

Several of the statistical calls will not work properly if the data passed contain missing obser-

vations. A simple way to avoid issues is to use the na.rm option that is available in many of the

calls, for example in mean, cor, median, quantile and sd.

There are even a variety of graphical facilities at your disposal, such as a quantile-quantile (QQ)

plot to assess normality. The following code

> nox.stud <- (nox-mean(nox))/sd(nox) ## Standardize nox

> qqnorm(nox.stud) ## Produce Q-Q plot for nox.stud

> qqline(nox.stud,col="red",lwd=2)

will produce the Normal Q-Q plot in Figure 10.

Another useful plotting device is the boxplot. We can use the following code

> boxplot(nox,notch=TRUE,xlab="NOX") ## Produce boxplot for nox

will produce the boxplot in Figure 11.

For a list of all the statistical options available type library(help="stats").

6.1. Probability Distributions. R provides a powerful interface to obtain values for the cumu-

lative distribution function, probability density function and the quantile function of a variety of

distributions. Many of these commands also generate random deviates which is useful for generat-

ing your own datasets for DGPs as well as performing calculations with simulated methods. Table

3 lists many of the common calls. Most of the popular distributions can be accessed within the

base package. Furthermore, there are two additional packages which offer additional distributions

as well as many of the distributions listed here. These are distr and distrEx (Ruckdeschel, Kohl,

Stabla & Camphausen 2006) and SuppDists (Wheeler 2009). In sum, R offers an attractive array

of statistical distributions which can be accessed with relative ease and a common set of calls for

each of the associated functions.

For each of the listed distributions, by placing the letters d, p, q, and r you can access the density,

distribution, quantile and random generator, respectively. For example

> set.seed(1) ## Set seed of random number generator for full replicability

> dpois(c(0,1,2,3),lambda=1) ## pdf values for c(0,1,2,3)
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Figure 10. Q-Q plot for nox.
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[1] 0.36787944 0.36787944 0.18393972 0.06131324

> ppois(c(0,1,2,3),lambda=1) ## CDF values for c(0,1,2,3)

[1] 0.3678794 0.7357589 0.9196986 0.9810118

> qpois(c(0.01,0.45,0.75),lambda=1) ## 0.01,0.45, and 0.75 quantiles

[1] 0 1 2

> rpois(10,lambda=1) ## Generate pseudo-random Poisson deviates.

[1] 0 1 1 2 0 2 3 1 1 0

7. Writing a Loop

When constructing your own code typically you will have repeated commands which you loop

over, such as when you engage in bootstrapping. Writing a loop in R is very simple. The for()

construction will allow you to write a loop. The for() construction works as follows
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Figure 11. Boxplot for nox.
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> for (name in expression1) {expression2}

where name is the variable you are looping over, expression1 is a sequence or vector expression

and expression2 is the expression you wish to repeatedly evaluate. For example

> mn <- numeric() ## Create storage

> for (j in 1:10){ ## Loop will repeat 10 times

+

+ mn[j] <- mean(rnorm(100)) ## Take mean of 100

+ ## Standard normal deviates

+

+ }

> mean(mn) ## Take the mean of the means

[1] -0.01063824
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Table 3. Summary of Probability Distributions.

Distribution R Name Package
beta beta stats

binomial binom stats

Cauchy cauchy stats

χ2 chisq stats

Exponential exp stats

F f stats

gamma gamma stats

generalized extreme value gev evir

geometric geom stats

hypergeometric hyper stats

log-normal lnorm stats

logistic logis stats

Multivariate normal mvnorm mvtnorm

Multivariate t mt LearnBayes

negative binomial nbinom stats

normal norm stats

Pareto pareto actuar

Poisson pois stats

Student’s t t stats

uniform unif stats

Weibull weibull stats

Wilcoxon wilcox stats

Other looping constructions in R include the repeat and while statements, though these are

used much less often than for.

8. The Linear Model

Undoubtedly, ordinary least squares (OLS) is the workhorse statistical model for economists.

Universally, all statistical packages offer some form of conducting a regression analysis and R is

no different. The main call for running a linear model in R is lm(). A generic invocation of lm()

is undertaken with a formula. A call to lm() produces an object of class lm which will contain

a number of key aspects of your regression analysis such as coefficient estimates and standard

errors. In the following example we will conduct a simple log-linear hedonic analysis from within

the Hedonic dataset. Our dependent variable is log(mv) and our explanatory variables are chas

and nox.

> Hedonic$lmv <- log(mv) ## Construct log of mv

> hedonic.model <- lm(lmv~nox+chas,data=Hedonic) ## Run regression

> attributes(hedonic.model) ## List all attributes of lm object

$names

[1] "coefficients" "residuals" "effects" "rank"
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[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"

$class

[1] "lm"

> summary(hedonic.model) ## Summarize results

Call:

lm(formula = lmv ~ nox + chas, data = Hedonic)

Residuals:

Min 1Q Median 3Q Max

-0.126756 -0.019075 -0.002391 0.018099 0.102954

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3434945 0.0039107 599.253 < 2e-16 ***

nox -0.0015545 0.0001123 -13.840 < 2e-16 ***

chasyes 0.0340958 0.0061561 5.539 4.92e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03496 on 503 degrees of freedom

Multiple R-squared: 0.2934, Adjusted R-squared: 0.2906

F-statistic: 104.4 on 2 and 503 DF, p-value: < 2.2e-16

The attributes() command is exceptionally useful when determining all of the pieces of an

object. You will see that the hedonic.model object has 13 pieces. Any of these pieces can be easily

accessed by typing hedonic.model$name where name is the object you want. Notice that we did

not specify an intercept in our model, yet one appeared. This is because the default in lm() is to

include an intercept. If you wanted to estimate a regression model without an intercept then the

formula lmv nox+chas-1 would do the trick.

Suppose you were concerned that the coefficients of the hedonic model varied whether or not the

location of the property was near the Charles river. In this case a standard F-test would allow you

to investigate this hypothesis. To formally test this two models would need to be estimated, one

including only tracts along the Charles river and another for tracts away from the Charles river.

In this case, we can use the subset option within lm

> hedonic.model.chas <- lm(lmv~nox,data=Hedonic,subset=chas=="yes") ## Run regression

> hedonic.model.nochas <- lm(lmv~nox,data=Hedonic,subset=chas!="yes") ## Run regression
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The corresponding residual sum of squares could be stripped off from each of these objects to

construct the desired F-statistic.

There are times when we will want to include transformations of our regressors into the linear

model. Examples include linear combinations amongst several regressors, interactions, higher or-

der terms and logarithmic transforms, to name a few. These types of transformations can easily

be included directly into your lm() call without creating the corresponding variable within R’s

workspace. For example, suppose we wanted to include the square of nox because we believed a

form of nonlinearity existed in our hedonic function. To account for this we would use

> hedonic.model <- lm(lmv~nox+I(nox^2)+chas,data=Hedonic) ## Run regression

> summary(hedonic.model) ## Summarize results

Call:

lm(formula = lmv ~ nox + I(nox^2) + chas, data = Hedonic)

Residuals:

Min 1Q Median 3Q Max

-0.121704 -0.018517 -0.002409 0.016570 0.109649

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.380e+00 8.909e-03 267.194 < 2e-16 ***

nox -3.734e-03 4.881e-04 -7.650 1.03e-13 ***

I(nox^2) 2.722e-05 5.938e-06 4.584 5.77e-06 ***

chasyes 3.131e-02 6.068e-03 5.161 3.55e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03428 on 502 degrees of freedom

Multiple R-squared: 0.3218, Adjusted R-squared: 0.3178

F-statistic: 79.4 on 3 and 502 DF, p-value: < 2.2e-16

The use of I() is meant to inform lm() to interpret the mathematical command as a new variable

within the lm() environment. I() literally means Identity function. A setting where you do not

need the I() call is when you want interactions. We can include interactions of our regressors using

the colon, ‘:’.

> hedonic.model <- lm(lmv~nox+chas+nox:chas,data=Hedonic) ## Run regression

> summary(hedonic.model) ## Summarize results

Call:

lm(formula = lmv ~ nox + chas + nox:chas, data = Hedonic)
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Residuals:

Min 1Q Median 3Q Max

-0.125533 -0.018733 -0.002874 0.017546 0.103714

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3458738 0.0041257 568.602 <2e-16 ***

nox -0.0016294 0.0001198 -13.606 <2e-16 ***

chasyes 0.0120167 0.0138615 0.867 0.3864

nox:chasyes 0.0006038 0.0003398 1.777 0.0762 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03488 on 502 degrees of freedom

Multiple R-squared: 0.2978, Adjusted R-squared: 0.2936

F-statistic: 70.98 on 3 and 502 DF, p-value: < 2.2e-16

A shorthand way to code exactly the same model in the lm() environment is to use

> hedonic.model <- lm(lmv~nox*chas,data=Hedonic) ## Run regression

> summary(hedonic.model) ## Summarize results

Call:

lm(formula = lmv ~ nox * chas, data = Hedonic)

Residuals:

Min 1Q Median 3Q Max

-0.125533 -0.018733 -0.002874 0.017546 0.103714

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3458738 0.0041257 568.602 <2e-16 ***

nox -0.0016294 0.0001198 -13.606 <2e-16 ***

chasyes 0.0120167 0.0138615 0.867 0.3864

nox:chasyes 0.0006038 0.0003398 1.777 0.0762 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03488 on 502 degrees of freedom

Multiple R-squared: 0.2978, Adjusted R-squared: 0.2936

F-statistic: 70.98 on 3 and 502 DF, p-value: < 2.2e-16



34 R INTRO

Using the ‘*’ in the formula for lm creates all possible interactions, whereas the ‘:’ only creates a

single interaction. Note the difference in the following two calls

> lm(lmv~nox*chas*crim,data=Hedonic) ## Run regression

Call:

lm(formula = lmv ~ nox * chas * crim, data = Hedonic)

Coefficients:

(Intercept) nox chasyes crim

2.3312670 -0.0009388 0.0061531 0.0028423

nox:chasyes nox:crim chasyes:crim nox:chasyes:crim

0.0002407 -0.0001062 0.0331575 -0.0005040

> lm(lmv~nox:chas:crim,data=Hedonic) ## Run regression

Call:

lm(formula = lmv ~ nox:chas:crim, data = Hedonic)

Coefficients:

(Intercept) nox:chasno:crim nox:chasyes:crim

2.305e+00 -5.984e-05 2.588e-05

To quickly access key features of interest from your lm object, a set of basic commands already

exist to assist you. If you wanted to extract the coefficients of your model you can use

> model <- lm(lmv~nox+chas+crim,data=Hedonic) ## Run regression

> coefficients(model) ## Extract coefficients

(Intercept) nox chasyes crim

2.335461267 -0.001081467 0.027958250 -0.001862245

or the variance covariance matrix

> vcov(model) ## Extract variance-covariance matrix

(Intercept) nox chasyes crim

(Intercept) 1.325092e-05 -3.666364e-07 1.461268e-07 1.406185e-07

nox -3.666364e-07 1.253323e-08 -8.490343e-08 -8.279418e-09

chasyes 1.461268e-07 -8.490343e-08 3.168721e-05 1.074348e-07

crim 1.406185e-07 -8.279418e-09 1.074348e-07 3.259767e-08

> sqrt(diag(vcov(model))) ## Standard errors

(Intercept) nox chasyes crim

0.0036401820 0.0001119519 0.0056291390 0.0001805482

or the residual sum of squares

> deviance(model) ## RSS

[1] 0.5072382
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and the fitted values and residuals

> fit <- fitted(model) ## Extract fitted values

> uhat <- residuals(model) ## Extract residuals

8.1. Generalizations of the Linear Model. Aside from the basic linear model a whole suite

of alternative ‘regression’ based estimators exists. The main alternative to lm() within the stock

install of R is glm() which stands for generalized linear model. The glm() environment will allow

the user to estimate logit, Probit and Poisson regression models with ease. For example, if we

load the Somerville dataset in the Ecdat package, we can examine the determinants of going on

a fishing trip.

> data(Somerville) ## Load dataset

> Somerville$trip <- Somerville$visits>0 ## Observations where a trip was taken

> model.logit <- glm(trip~quality+ski+income+feeSom,

+ data=Somerville,

+ family=binomial(link="logit"))

> model.probit <- glm(trip~quality+ski+income+feeSom,

+ data=Somerville,

+ family=binomial(link="probit"))

> summary(model.logit) ## Summarize logit results

Call:

glm(formula = trip ~ quality + ski + income + feeSom, family = binomial(link = "logit"),

data = Somerville)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9978 -0.3204 -0.3047 0.3116 2.4794

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.84039 0.36786 -7.721 1.15e-14 ***

quality 1.48106 0.10069 14.709 < 2e-16 ***

skiyes 0.17503 0.31262 0.560 0.576

income -0.05158 0.08205 -0.629 0.530

feeSomyes 16.79490 883.43139 0.019 0.985

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 866.53 on 658 degrees of freedom

Residual deviance: 337.28 on 654 degrees of freedom

AIC: 347.28

Number of Fisher Scoring iterations: 16

> summary(model.probit) ## Summarize probit results

Call:

glm(formula = trip ~ quality + ski + income + feeSom, family = binomial(link = "probit"),

data = Somerville)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.1494 -0.2975 -0.2788 0.3235 2.4847

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.69398 0.18801 -9.010 <2e-16 ***

quality 0.82112 0.04850 16.932 <2e-16 ***

skiyes 0.14358 0.16111 0.891 0.373

income -0.01975 0.04232 -0.467 0.641

feeSomyes 5.74592 129.92844 0.044 0.965

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 866.53 on 658 degrees of freedom

Residual deviance: 336.92 on 654 degrees of freedom

AIC: 346.92

Number of Fisher Scoring iterations: 15

The erer package (Sun 2011) is useful when marginal effects and their associated standard errors

are desired for logit/probit models.

Instead of summarizing the number of visits to Lake Somerville as a binary indicator, we could

use the true count nature of visits and estimate a Poisson regression. To do that with the glm

command we would use

> model.pois <- glm(visits~quality+ski+income+feeSom,

+ data=Somerville,
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+ family=poisson)

> summary(model.pois) ## Summarize poisson results

Call:

glm(formula = visits ~ quality + ski + income + feeSom, family = poisson,

data = Somerville)

Deviance Residuals:

Min 1Q Median 3Q Max

-7.6003 -1.2508 -1.0677 -0.7387 22.3193

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.03705 0.08364 -0.443 0.658

quality 0.52814 0.01555 33.967 < 2e-16 ***

skiyes 0.31668 0.05505 5.753 8.78e-09 ***

income -0.17505 0.01900 -9.214 < 2e-16 ***

feeSomyes 1.28430 0.07876 16.307 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4849.7 on 658 degrees of freedom

Residual deviance: 2974.2 on 654 degrees of freedom

AIC: 3737.2

Number of Fisher Scoring iterations: 7

The glm() call is extremely powerful. If you specify family=gaussian you would conduct OLS.

Use ?family to learn more about the available statistical families that glm deploys.

Table 4 lists a variety of common econometric methods for which packages are available in R for

implementation.

9. Graphics in R

Graphics are a key component to any econometric exercise. Graphics in R can be done interac-

tively which provides an array of manifestations of your data/results. There exist both high-level

plotting functions, which create new plots, and low-level plotting functions, which add additional

features to an already existing plot. A high-level plotting command will always erase a current plot

so it is important to know which calls do what to preserve already displayed information. Perhaps
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Table 4. Summary of Mainstream ‘Regression’ Packages.

Method R call Package
IV Regression ivreg() AER

Heckman Selection heckit() sampleSelection

Seemingly Unrelated Regression systemfit() systemfit

3SLS systemfit() systemfit

Panel Data plm() plm

Quantile Regression rq() quantreg

Tobit Regression tobit() AER

Negative Binomial Regression glm.nb() MASS

Censored Regression censReg() censReg

Ordered Logistic/Probit Regression polr() MASS

Generalized Additive Modelling gam() mgcv

Spatial Regression GMerrorsar() spdep

Bayesian Model Averaging bms() bms

the most frequently used plotting command in R is the plot() command. plot() is designed to

display the results of a number of different R objects.

The plot command can be used to plot out your raw data as follows:

> plot(nox,lmv,cex=0.9,col="red") ## Produce data plot for (nox,lmv)

This code produces Figure 12.

There are a number of available options to customize the plotting environment in R. Use ?par

to access these options. Additional high-level plotting facilities in the graphics package in R are

qqplot() (Q-Q plot), hist() (Histogram), persp() (3D surface) and contour() (contour lines of

a 3D surface).

We could augment our plots using low-level plotting facilities to make them more appealing and

visually informative. For example, if I wanted to add the fitted OLS line to the scatterplot of data

in Figure 12 I could use

> abline(lm(lmv~nox,data=Hedonic),

+ lty=2,lwd=2,col="blue") ## Produce fitted linear model

This additional code produces Figure 13.

Further low-level plotting devices include points() (overlay a scatterplot), lines() (overlay a

line), text() (place text on your graph), and legend() (add a legend to your plot). When including

a legend or text into your plot you will typically need to ‘fix’ a corner of the legend. A simple way

to do this is with the locator() function. After producing a plot, to determine the location (on

the plot) where you would like your legend, simply type locator() and a cross hatch will appear

as your mouse when you move over the plot. Click on the area of the plot where you want the

upper left corner of the legend to appear. Then hit escape and you will return to the R console

where the coordinates have been printed out. You can then use these when you call the placement

of the legend or text. If you want to use mathematical symbols in either your legend, the text you
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Figure 12. Scatter plot for nox and lmv.
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add to your plot or the labeling of the axes and title of the plot, the plotmath environment is a

lifesaver. Type ?plotmath and a variety of examples will pop up that should get you on the right

path.

If you want to produce multiple plots on the same figure you can use par(mfrow=c(2,2)) prior

to your invocations of plot() and this will create a plot surface that is two plots across and two

plots down. Clearly you could change the c(2,2) condition to match your desired effect.

Invariably you will want to place your plots into your text editor (hopefully LATEX!). To do this

you can tell R to create your plot as a variety of devices including postscript (.ps), pdf (.pdf) and

JPEG (.jpeg). To do this you would use the code

> pdf(file="Scatterplot.pdf") ## Send plots to pdf Device

> plot(nox,lmv,cex=0.9,col="red") ## Produce data plot for (nox,lmv)

> dev.off() ## Turn off device
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Figure 13. Fitted OLS regression line of nox and lmv.

20 30 40 50 60 70

2.
15

2.
20

2.
25

2.
30

2.
35

nox

lm
v

which will produce what appears in Figure 12. Make sure that you call dev.off() after you are

finished otherwise you may have trouble opening your plots. For more on the devices you can send

plots to type ?Devices.

For more sophisticated graphics, such as dynamic graphics see the lattice (Sarkar 2008), igraph

(Csardi & Nepusz 2006) and rgl (Adler & Murdoch 2011) packages.

10. Writing Your Own Function

While R offers an impressive range of statistical commands to conduct an econometric analysis,

inevitably there will be methods and procedures that you will want to use that are not currently

available in R (perhaps you developed a new estimator). In these instances creating your own

‘function’ to construct an R object will be of interest to you. Becoming a skilled writer of functions

is a key contributor to enhancing your enjoyment of R and will make you a more productive

researcher.
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A function is defined by an assignment expression of the form

> name <- function(argument1, argument2, ..., argumentJ) {expression}

The expression is a typical R assignment using as inputs the arguments you pass to the func-

tion. The value of expression is returned by the function. The function is then called as

name(argument1, argument2, ..., argumentJ) anywhere it is legitimate.

A simple example of constructing a function is would be to calculate the mean of a vector. The

function is defined as follows:

> Mean <- function(x) {

+ n <- length(x) ## Calculate sample size

+ y.bar <- sum(x)/n ## Calculate mean

+ y.bar ## Have function return mean

+ }

> y <- rnorm(100)

> Mean(x=y) ## Calculate mean with Mean()

[1] -0.02153563

> mean(y) ## Calculate mean with mean()

[1] -0.02153563

A more direct example would be to construct a function which returns the OLS estimates.

We already discussed estimating a linear model in R but this example is more in the spirit of

constructing a function. Recall that the OLS estimates are constructed as β̂ = (X ′X)−1X ′y.

> ols <- function(y,x) {

+ XX <- crossprod(x) ##Construct X'X
+ XY <- t(x)%*%y ## Construct X'y
+ beta.hat <- solve(XX)%*%XY ## Construct Estimate

+ return(beta.hat) ## Return Estimate

+ }

> ols(y=mv,x=cbind(1,nox)) ## Calculate with ols()

[,1]

10.41032016

nox -0.01457707

> lm(mv~nox)$coefficients ## Calculate with lm()

(Intercept) nox

10.41032016 -0.01457707

We can even create a binary operator in R that can be used directly in expressions instead of

invocation of a function. Suppose we chose r as an internal character to use. Then we can have

our function definition as
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> "%r%" <- function(y,x) {

+ XX <- crossprod(x) ##Construct X'X
+ XY <- t(x)%*%y ## Construct X'y
+ beta.hat <- solve(XX)%*%XY ## Construct Estimate

+ return(beta.hat) ## Return Estimate

+ }

> mv%r%cbind(1,nox) ## Calculate with binary operator

[,1]

10.41032016

nox -0.01457707

Any assignments occurring within the function are local and temporary. This means that once

the function has been left those variables and assignments, aside from what is returned are lost.

Thus, a call like nox <- Mean(nox) is perfectly legitimate (but you will overwrite the vector nox

with a scalar).

11. Final Thoughts

The discussion here has been brief and does not truly do justice to everything that R encapsulates.

R is a constantly evolving language with researchers continually adding updates and new packages

with cutting edge methods. I encourage you to use R for your own research given the ability

to incorporate Sweave and produce full replicable scientific documents from beginning to end.

Moreover, explore R. Grab a dataset within any of the packages discussed here and experiment

with the various options and calls. You will be amazed at the scope of the commands.
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