
An Introduction to GAMS
1

Véronique Robichaud

JULY 2010

Introduction

The GAMS software (General Algebraic Modeling System) was originally developed by a group of
economists from the World Bank in order to facilitate the resolution of large and complex non
linear models on personal computer. As a matter of fact, GAMS allows solving simultaneous non
linear equation system, with or without optimization of some objective function.

(i) Simplicity of implementation, (ii) portability and transferability between users and
systems and (iii) easiness of technical update because of the constant inclusion of new
algorithms are the main advantages of GAMS.

The seminal GAMS system was file oriented. The program must be created in ASCII format with any
one of the usual text editor run by a DOS command.

The development of GAMS-IDE interface in the late 1990s makes it even easier to use. GAMS-IDE
works as a general text editor compatible with WINDOWS and offers the ability to launch and
monitor the compilation and execution of typical GAMS programs. In this introduction note we
will present the general structure of the GAMS program, followed by a detailed illustration,
including a description of the output file.

Architecture of GAMS programming: input file, resolution

procedure and output settings

The structure of the input GAMS Code

Typically, a computable general equilibrium (CGE) model programmed in GAMS can be
decomposed in three modules corresponding respectively to data entry, model specification and
solve procedure (see Figure 1 below). The following chart gives an overall illustration of the
structure of the GAMS syntax. Note that the standard GAMS key words appear in bold.

It is important to note that declaration and definition, or assignment, must be completed for
each of the element in use in the model (i.e. sets, parameters, variables and equations).

Some general rules must be set apart concerning GAMS programming:

1 This document is an extract from “GAMS an Introduction”, a pedagogical paper written by Jean-Christophe Dumont
and Véronique Robichaud in 2000.

 2

 As a general rule, it is necessary to proceed to the declaration of any element before using it. In

particular, sets must be declared at the very beginning of the program.

 Even if it is not always necessary, a good habit is to end every statement by a semicolon in

order to avoid unexpected compilation error.

 GAMS allows for statement on several lines or several statement on the same line. This

property can help to reduce the length of the code or facilitate printing.

 Capital and small letters are not distinguished in GAMS.

 Finally the main mathematical functions are described bellow:

Multiplication * Equality in an operation = Logarithm LOG(.)

Subtraction - Summation SUM(set domain, element) Maximum MAX(.,.)

Addition + Product PROD(set domain, element) Minimum MIN(.,.)

Division / Absolute Value ABS(.)

Exponent ** Exponential EXP(.)

F IGURE 1: ORGANIZATION CHART OF A TYPICAL GAMS CODE FOR CGE MODELS

Stage 3: Resolution

SOLVE statement

Results display

 Stage 2: Model

VARIABLES declaration

EQUATIONS declaration

Equations definition

MODEL definition

Stage 1: Data

SETS declaration and definition

PARAMETERS declaration and definition

Data assignment

Intermediate displays

 3

Resolution procedure and output settings

Once the GAMS code has been written in a proper manner it must be saved with the extension
.gms. To run the code, one can either choose the run command in the file menu, press F9 or click
on the red arrow button.

The output file created by this process has the same prefix as the initial program but gets the
extension .lst. It contains either the initial program with compilation error identification if any,
either the default output settings as described bellow.

Output in the f i le ‘name.lst ’

 Echo print of the initial program

 Equation listing

 Column listing

 Model statistics

 Solve summary

 Results

The next two sections will give an illustration of the content and the nomenclature of GAMS
programming. The example is taken from a small theoretical CGE Model (Model 0).

Writing a GAMS Program

All statements previously presented are used in a complete GAMS program and some additional
options are also introduced. For further information on any of these commands, the reader should
refer to the GAMS User's Guide2 available under the help menu.

Calibration of a CGE model

The first part of the modeling process consists in entering data, which will be referred as
benchmark data, and evaluating parameters consistent with these values. This process is called the
calibration. In the case of CGE modeling, the benchmark data are usually drawn from the Social
Accounting Matrix (SAM). Parameters that can be calibrated will be determined with those.

T I TLE OPTION

Although not necessary, the title option allows a more comprehensible output listing. The text
following the $TITLE command will appear as a header on every page of the output listing. A sub-
title can also be added to this header using the command $STITLE.

$TITLE MODEL AUTA

2 Brooke A., D. Kendrick & A. Meeraus (1998), A. GAMS. A user’s Guide. The Scientific Press, San Fransisco.

 4

$STITLE AUTARKY WITHOUT GOVERNMENT

* Model of a closed economy without government producing 3 goods using

* 2 factors owned by 2 types of households.

In this example, MODEL AUTA will appear as the first line of each page in the output file

and AUTARKY WITHOUT GOVERNMENT on the second one. The following lines are

comments; GAMS will not read lines beginning with an asterisk (*). The use of

comments can be useful to the modeller in order to organize its program in a

comprehensive manner. Another way to insert comments is to put the text between the

$ONTEXT and $OFFTEXT command.

SET DEFINIT ION

The definition of sets is useful for multidimensional variables. It corresponds to the indexes in
mathematical representations of models.

SET I Sectors

/ AGR agriculture

 IND industry

 SER services /

GOOD(I) Goods

/ AGR agriculture

 IND industry /

H Households

/ HW labour endowed households

 HC capital endowed households /

ALIAS (I,J)

The SET statement defines the set of sectors. In this example, three sets are defined. The first one,
denoted by the letter I, contains elements are AGR, IND and SER. After each symbol (AGR, IND
and SER) a description can be added. The elements of a set are placed between slashes (/). The
second set, named GOOD, is in fact a subset of I, indicated by the (I) part and includes only the
two first elements. The last set represents households. A final command, ALIAS, is used allow the
modeller to use a second index (J) that represents exactly the same elements as the set I. This is
useful when using multi-indexed variables.

PARAMETERS DEFINITION

The parameters should now be defined. Parameters are the elements in the equations that will not
change after a simulation, such as elasticity, tax rates, distribution and scale coefficients. In
addition to these parameters, benchmark variables are also defined for their value at the base year
will not change after simulation. A common way to define these variables is to add an "O" after the
variable name so it will not be confused with the „true‟ variable. Parameters and benchmark
variables definition begins with the statement PARAMETER and end with a semicolon. Once
again, it is useful to put a description after the parameter designation, as it is done in the example.
When a parameter is subject to an index, like Aj, the set over which it is defined is put between
parentheses, A(j).

 5

PARAMETER

A(j) Scale coefficient (Cobb-Douglas production function)

aij(i,j) Input output coefficient

alpha(j) Share coefficient (Cobb-Douglas production function)

gamma(i,h) Share of the value of commodity i in total consumption

io(j) Coefficient (Leontief total intermediate consumption)

lambda Share of capital income received by capitalists

mu(i) Share of the value of commodity i in total investment

psi(h) Propensity to save for household h

v(j) Coefficient (Leontief value added)

* Variables definition for the base year

CO(i,h) Consumption of commodity i by type h households

CIO(j) Total intermediate consumption of industry j

DIO(i,j) Intermediate consumption of commodity i in industry j

DITO(i) Total intermediate demand for commodity i

DIVO Dividends

INVO(i) Final demand of commodity i for investment purposes

ITO Total investment

KDO(j) Sector j demand for capital

LDO(j) Industry j demand for labour

LSO Total labour supply

PO(i) Price of commodity i

PVAO(j) Value added price for industry j

RO(j) Rate of return to capital from industry j

SFO Firms' savings

SHO(h) Savings of type h household

VAO(j) Value added of industry j

WO Wage rate

XSO(j) Output of activity j

YFO Firms' income

YHO(h) Income of type h household

;

DATA HANDLING

Once the sets, parameters and benchmark variables are defined, data must be entered. This can be
done using the TABLE command, which is useful for multidimensional variables. The syntax in
the following: TABLE name(row domain, column domain) description. Here is an example:

TABLE SAM(*,*) Social accounting matrix

 LD KD HW HC F AGR IND SER ACC

LD 5760 7560 15540

KD 1440 11340 5720

HW 28860

HC 11100 1900

F 7400

AGR 4329 650 120 2526.9 275.5 1098.6

IND 11544 3900 1544 21709.1 5815.5 9887.4

SER 10101 5850 136 11264 3349

ACC 2886 2600 5500

TOT 28860 18500 28860 13000 7400 9000 54400 30700 10986

;

 6

The table is named SAM and has two dimensions. When the column/row labels do not refer to any
specific set, the asterisk is used. Here, we have simply put the entire SAM but using the elements of
the sets, when relevant, as the title of each column and row. This will greatly facilitate data
assignment. Values can be expressed without or with decimals but must fall under only one
column title. A semicolon indicates the end of the table.

When data is entered in a table, it then has to be assigned to the relevant variable. In the example,
the value of CO(i,h) can be found in the table SAM at the intersection of the row named i and
the column h. When referring to a row or a column that does not represent an element of a
defined set, brackets are used. For example, the value of dividends (DIVO) is given in table SAM at
the intersection of row „HC‟ and column „F‟.

CO(i,h) = SAM(i,h);

DIO(i,j) = SAM(i,j);

DIVO = SAM('HC','F');

INVO(i) = SAM(i,'ACC');

ITO = SAM('TOT','ACC');

KDO(j) = SAM('KD',j);

lambda = SAM('HC','KD');

LDO(j) = SAM('LD',j);

SFO = SAM('ACC','F');

SHO(h) = SAM('ACC',h);

YFO = SAM('TOT','F');

XSO(j) = SAM('TOT',j);

YHO(h) = SAM('TOT',h);

Values for variables and parameters can also be entered simply as follows. In our example, all prices
are set to one.

WO = 1;

RO(j) = 1;

PO(i) = 1;

CALCULATION OF VARIAB LES AND CALIBRATION

Other variables and parameters can be calculated or calibrated from the ones entered previously.
At the end of each calculation, a semicolon is put. The sequence in which they are calculated is very
important because GAMS will use the last value assigned to a variable or a parameter.

LDO(i) = LDO(i)/WO;

KDO(i) = KDO(i)/RO(i);

XSO(i) = XSO(i)/PO(i);

CO(i,h) = CO(i,h)/PO(i);

INVO(i) = INVO(i)/PO(i);

DIO(i,j) = DIO(i,j)/PO(i);

DITO(i) = SUM[j,DIO(i,j)];

CIO(J) = SUM[i,DIO(i,j)];

VAO(i) = LDO(i)+KDO(i);

LSO = SUM[i,LDO(i)];

PVAO(i) = {PO(i)*XSO(i)-SUM[j,PO(J)*DIO(j,i)]}/VAO(i);

 7

* Calibration of parameters

* Production (Cobb-Douglas and Leontief)

alpha(i) = WO*LDO(i)/{PVAO(i)*VAO(i)};

A(i) = VAO(i)/{LDO(i)**alpha(i)*KDO(i)**(1-alpha(i))};

io(i) = CIO(i)/XSO(i);

v(i) = VAO(i)/XSO(i);

* Share parameters

gamma(i,h) = PO(i)*CO(i,h)/YHO(h);

psi(h) = SHO(h)/YHO(h);

mu(i) = PO(i)*INVO(i)/ITO;

aij(i,j) = DIO(i,j)/CIO(J);

lambda = lambda/SUM[i,RO(i)*KDO(i)];

D ISPLAY OF PARAMETERS AND VARIABLES

In the output listing, values of parameters are not automatically printed. The DISPLAY option
will allow displaying these values. Note that the names of parameters and benchmark variables are
entered without dimension.

DISPLAY A, alpha, io, v, aij, gamma, psi, mu, lambda;

The model

VARIABLE DECLARATION

All variables, endogenous or exogenous, appearing in the equations must first be declared. The
statement VARIABLES begins this procedure and ends with a semicolon. Following the variable
name, for example W, a brief description can be added.

VARIABLES

C(i,h) Consumption of commodity i by type h households

CI(j) Total intermediate consumption of industry j

DI(i,j) Intermediate consumption of commodity i in industry j

DIT(i) Total intermediate demand for commodity i

DIV Dividends

INV(i) Final demand of commodity i for investment purposes

IT Total investment

KD(j) Sector j demand for capital

LD(j) Industry j demand for labour

LS Total labour supply

P(i) Price of commodity i

PVA(j) Value added price for industry j

R(j) Rate of return to capital from industry j

SF Firms' savings

SH(h) Savings of type h household

VA(j) Value added of industry j

W Wage rate

XS(j) Output of activity j

YF Firms' income

YH(h) Income of type h household

 8

LEON Walras law verification variable

;

EQUATIONS DECLARATION

As with the previous components of the model, the equation must be declared and defined. This
step begins with the EQUATIONS statement followed by the symbols for which a description can
be added. For example, the equation named EQ1(j)is followed by a short description. When all
equations are declared, a semicolon indicates the end.

EQUATIONS

* Production

EQ1(j) Value added demand in industry i (Leontief)

EQ2(j) Total intermediate consumption demand in industry j (Leontief)

EQ3(j) Cobb-Douglas between labour and capital

EQ4(j) Demand for labour by industry j

EQ5(j) Demand for capital by industry j

EQ6(i,j) Intermediate consumption of commodity i by sector j

* Income and savings

EQ7 Household income (workers)

EQ8 Household income (capitalists)

EQ9(h) Household h savings

EQ10 Firms income

EQ11 Firms savings

* Demand

EQ12(i,h) Household h consumption of commodity i

EQ13(i) Investment in commodity i

EQ14(i) Intermediate demand for commodity i

* Prices

EQ15(j) Output price for industry j

* Equilibrium

EQ16(good) Domestic absorption

EQ17 Labour market equilibrium

EQ18 Investment-savings equilibrium

* Other

WALRAS Verification of the Walras law

;

EQUATIONS ASSIGNMENT

The syntax for equation definition is the following. First the name and dimension is stated followed
by two dots. Then the equation is defined and ends with a semicolon. The =E= between the left
hand side and the right hand side of the equation simply means "equals to" as opposed to =G= or
=L= which respectively represent "greater than" and "less than". Each equation can only be
defined once but the variables can appear in several equations and on both sides of the same

 9

equation. Here, the order in which the equations are defined does not matter since all equations are
solved simultaneously.

* Production

EQ1(j).. VA(j) =e= v(j)*XS(j);

EQ2(j).. CI(j) =e= io(j)*XS(j);

EQ3(j).. VA(j) =e= A(j)*LD(j)**alpha(j)*KD(j)**(1-alpha(j)) ;

EQ4(j).. W*LD(j) =e= alpha(j)*PVA(j)*VA(j);

EQ5(j).. R(j)*KD(j) =e= (1-alpha(j))*PVA(j)*VA(j);

EQ6(i,j).. DI(i,j) =e= aij(i,j)*CI(J);

* Income and savings

EQ7.. YH("HW") =e= W*SUM[i,LD(i)] ;

EQ8.. YH("HC") =e= lambda*SUM[j,R(j)*KD(j)] + DIV;

EQ9(h).. SH(h) =e= psi(h)*YH(h);

EQ10.. YF =e= (1-lambda)*SUM[j,R(j)*KD(j)];

EQ11.. SF =e= YF-DIV;

* Demand

EQ12(i,h).. P(i)*C(i,h) =e= gamma(i,h)*YH(h);

EQ13(i).. P(i)*INV(i) =e= mu(i)*IT;

EQ14(i).. DIT(i) =e= SUM[j,DI(i,j)];

* Prices

EQ15(j).. P(j)*XS(j) =e= PVA(j)*VA(j)+SUM[i,P(i)*DI(i,j)];

* Equilibrium

EQ16(GOOD).. XS(good) =e= SUM[h,C(good,h)]+DIT(good)+INV(good);

EQ17.. LS =e= SUM[j,LD(j)];

EQ18.. IT =e= SUM[h,SH(h)]+SF;

* Walras law

WALRAS.. LEON =e= XS('ser')-SUM(h,C('ser',h))-DIT('ser')-INV('ser');

INITIALIZATION PROCEDURE

For all variables declared previously, a value must now be assigned. In order to solve the
equations, GAMS has to start from a benchmark value. If no value is associated to a variable,
GAMS will use zero, which could cause problems if the variable appears at the denominator of a
division. For the endogenous variables, that is the ones whom values will be affected by a
simulation, the suffix .L (for level) is used as follow:

C.l(i,h) = CO(i,h);

CI.l(i) = CIO(i);

DI.l(i,j) = DIO(i,j);

DIT.l(i) = DITO(i);

DIV.l = DIVO;

INV.l(i) = INVO(i);

IT.l = ITO;

KD.l(j) = KDO(j);

LD.l(j) = LDO(j);

LS.l = LSO;

 10

P.l(i) = PO(i);

PVA.l(j) = PVAO(j);

R.l(j) = RO(j);

SF.l = SFO;

SH.l(h) = SHO(h);

VA.l(j) = VAO(j);

W.l = WO;

XS.l(j) = XSO(j);

YF.l = YFO;

YH.l(h) = YHO(h);

For the exogenous variables, that is the ones whom values will not be affected by a simulation, the
suffix .FX (for fixed) is used:

* P(AGR) is the numeraire, capital is sector specific

P.fx('agr') = PO('agr');

LS.fx = LSO;

KD.fx(i) = KDO(i);

DIV.fx = DIVO;

In both cases, the syntax is very similar that is, the name of the variable, the suffix, the variable
dimension, the equal sign (=), the benchmark value defined in the calibration process and a
semicolon.

MODEL EXECUTION

Finally, two lines must be added in order to solve the equation system. The first one defines the
model. It begins with the MODEL statement, followed by a name (AUTA in the example), a brief
description (AUTARKY WITHOUT GOVERNMENT), the list of equations to be resolved
between slashes and a semicolon. When all equations are to be solved the key word ALL is put
instead of the complete list of equations.

MODEL AUTA AUTARKY WITHOUT GOVERNMENT /ALL/;

The second line defines the procedure to be used in resolving the model. The SOLVE statement is
followed by the name of the model, USING and the procedure to be used to resolve the model.
The procedure to be used is determined by the type of model to solve. For example, linear
programs can be solved using the LP procedure, while non-linear programs can be solved using
NLP. Each procedure uses a different solver (MINOS, CONOPT, MILES, ...). These solvers use
different algorithms that can be efficient in resolving some systems but less in other cases. In our
example, the CNS procedure is used.

SOLVE AUTA USING CNS;

Reading a GAMS output file

Once GAMS has solved an equation system, it creates an output file. In this section the output file
of the program presented in the previous section is described.

 11

Echo print

The first part of the output file is simply the reproduction of the model with line numbers on the
left hand side, for further references in the file. If there are errors in the program, this is the only
part of the output that will appear. Here is an example. There is a parenthesis missing at the end of
the calculation of the parameter alpha. In the echo print of the initial program, GAMS will put four
asterisks (****) below the line where a mistake has been detected followed by a dollar sign ($) and
a number corresponding to a specific error.

136 alpha(i) = WO*LDO(i)/{PVAO(i)*VAO(i);

**** $8

Because of this error, GAMS was unable to solve the model, thus another error is put on the last
line of the program.

306 SOLVE AUTA USING CNS;

**** $257
At the end the echo print of the program, a description of the error code is given in order to
facilitate the correction:

Error Messages

 8 ')' expected

257 Solve statement not checked because of previous errors

When no errors are encountered, the following information also appears in the listing.

Displayed parameters

In the calibration process, the DISPLAY statement was used in order to print the value of some
parameters in the output file. These values appear after the echo print as follow:

---- 150 PARAMETER A Scale coefficient (Cobb-Douglas production function)

AGR 1.649, IND 1.960, SER 1.790

---- 150 PARAMETER alpha Share coefficient (Cobb-Douglas production function

)

AGR 0.800, IND 0.400, SER 0.731

Equation list ing

This section presents, for each equation, the specific instance of the model that is created when
actual values of the sets and parameters are used. At the end of the equation, the value of the left
hand side is put between parenthesis (LHS= " "). When the value of the left hand side differs from
the one on the right hand side, GAMS add four asterisks (****). This indication can be useful in
finding problems linked to incorrect parameter calibration, or improper initialization of variable.

Equation Listing SOLVE AUTA Using CNS From line 306

 12

---- EQ1 =E= Value added demand in industry i (Leontief)

EQ1(AGR).. VA(AGR) - 0.8*XS(AGR) =E= 0 ; (LHS = 0)

EQ1(IND).. VA(IND) - 0.347426470588235*XS(IND) =E= 0 ; (LHS = 0)

EQ1(SER).. VA(SER) - 0.692508143322476*XS(SER) =E= 0 ; (LHS = 0)

Column listing

Following the equation listing, GAMS prints the equivalent information by column instead of row.
For each variable, the lower and upper bounds, the level calculated by the solver and the value of
the coefficient affecting the actual variable in each equation are given. If the coefficient is non-
linear, it is put between parentheses. In the example below, the wage (noted w) has no lower
bounds (thus -INF for minus infinity), no upper bounds (+INF) and the level that satisfies
equilibrium is 0.75. The variable appears in five equations, LDEM(I), INCH and RETK(I), which
are non-linear, so the value of the coefficient affecting w is put between parentheses.

Column Listing SOLVE AUTA Using CNS From line 306

---- C Consumption of commodity i by type h households (volume)

C(AGR,HW)

 (.LO, .L, .UP, .M = -INF, 4329, +INF, 0)

 1 EQ12(AGR,HW)

 -1 EQ16(AGR)

C(AGR,HC)

 (.LO, .L, .UP, .M = -INF, 650, +INF, 0)

 1 EQ12(AGR,HC)

 -1 EQ16(AGR)

C(IND,HW)

 (.LO, .L, .UP, .M = -INF, 11544, +INF, 0)

 (1) EQ12(IND,HW)

 -1 EQ16(IND)

Model statistics

The purpose of this section is to provide information on the size and non-linearity of the model.
The BLOCK gives the number of equations and variables in the model, in our example 19 and 21
respectively, while SINGLE gives the number of rows and column generated by the solver, here 50
and 56. The NON-ZERO ELEMENTS count refers to the number of non-zero coefficients. The
four remaining entries give information about the non-linearity of the model. The NON LINEAR
N-Z indicates the number of nonlinear matrix entries in the model. The CODE LENGH and the
CONSTANT POOL give the user the level of complexity on the non-linearity. Finally, this section
indicates the time used to generate the model (GENERATION TIME).

MODEL STATISTICS

BLOCKS OF EQUATIONS 19 SINGLE EQUATIONS 50

BLOCKS OF VARIABLES 21 SINGLE VARIABLES 56

NON ZERO ELEMENTS 179 NON LINEAR N-Z 91

 13

DERIVATIVE POOL 16 CONSTANT POOL 25

CODE LENGTH 512

FIXED EQUATIONS 50 FREE VARIABLES 50

GENERATION TIME = 0.015 SECONDS 4 Mb WEX233-233 Nov 17, 2009

Solve Summary

While all previous information referred to the solving process, the followings concern the solution
itself. The first section on this matter is the solve summary. It recalls the name of the model (here
THEORY), the type of model (CNS) and the solver used (CONOPT). The SOLVER STATUS
indicates the way the solver terminated. If the resolution has been interrupted by the user or by the
solver (because of errors) this is where it will be indicated. In our example, the solver terminated
in a normal way, which is indicated by 1 NORMAL COMPLETION. While the SOLVER STATUS
refers to the resolution process, the MODEL STATUS refers to the solution itself. The code 1
OPTIMAL indicates that the solution is optimal. The RESOURCE USAGE, LIMIT, gives
information about the time, in seconds, taken by the solver and the upper limit allowed for the
solver. The default upper bound is 1000 but can be changed by the user. The ITERATION
COUNT, LIMIT provides the number of iterations used by the solver and the upper limit (default
being 10,000). Finally, EVALUATION ERRORS indicates the number of errors encountered by
the solver and the maximum error allowed (default being 0).

 S O L V E S U M M A R Y

 MODEL AUTA

 TYPE CNS

 SOLVER CONOPT FROM LINE 306

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 16 Solved

 RESOURCE USAGE, LIMIT 0.016 1000.000

 ITERATION COUNT, LIMIT 2 2000000000

 EVALUATION ERRORS 0 0

Solution Listing

In this section, GAMS lists the solution found by the solver row-by-row then column-by-column.
For each equation and each variable it indicates the lower and upper bounds, the level and the
marginal. While the bounds are defined by the modeller, the level and the marginal are calculated
by the solver. The dot "." means zero. Here is an example of the equation list:

---- EQU EQ1 Value added demand in industry i (Leontief)

 LOWER LEVEL UPPER

AGR . . .

IND . . .

SER . . .

---- EQU EQ2 Total intermediate consumption demand in industry j (Leontief)

 14

 LOWER LEVEL UPPER

AGR . . .

IND . . .

SER . . .

And here is an example of the variable listing:

---- VAR C Consumption of commodity i by type h households (volume)

 LOWER LEVEL UPPER

AGR.HW -INF 4329.000 +INF

AGR.HC -INF 650.000 +INF

IND.HW -INF 11544.000 +INF

IND.HC -INF 3900.000 +INF

SER.HW -INF 10101.000 +INF

SER.HC -INF 5850.000 +INF

Report Summary

The report summary section indicates the count of rows or column that GAMS marked with the
following remarks and the counts of errors.

**** REPORT SUMMARY : 0 INFEASIBLE

 0 DEPENDENT

 0 ERRORS

File Summary

The last part of the output file indicates the names of the input and output files. In the following
example, the input file name is AUTA.GMS and the output file is AUTA.LST and files are
located in the same directory.

**** FILE SUMMARY

Input C:\auta.gms

Output C:\auta.lst

