THE PEP STANDARD **COMPUTABLE GENERAL EQUILIBRIUM MODEL SINGLE-COUNTRY, STATIC VERSION**

PEP-1-1

VERSION 2.0¹ **MAY 2012**

EQUATIONS, SETS, VARIABLES AND PARAMETERS

Bernard Decaluwé² André Lemelin 3 Véronique Robichaud 4 Hélène Maisonnave 5

¹ Version 2.0 refers to version 2.0 of the GAMS code. This document succeeds and replaces the January 2010 edition with November 2010 minor corrections.

⁵ Financial and Fiscal Commission, South Africa, and PEP, Université Laval, Québec

² Département d'économique, Université Laval, Québec

³ Centre INRS-UCS, Université du Québec, Montréal

⁴ CIRPÉE et PEP, Université Laval, Québec

APPENDIX A: EQUATIONS, SETS, VARIABLES AND PARAMETERS

A1. Equations

A1.1 PRODUCTION

1.
$$VA_i = v_i XST_i$$

2.
$$CI_j = io_j XST_j$$

3.
$$VA_{j} = B_{j}^{VA} \left[\beta_{j}^{VA} LDC_{j}^{-\rho_{j}^{VA}} + (1 - \beta_{j}^{VA}) KDC_{j}^{-\rho_{j}^{VA}} \right]^{-\rho_{j}^{VA}}$$

4.
$$LDC_{j} = \left[\frac{\beta_{j}^{VA}}{1 - \beta_{j}^{VA}} \frac{RC_{j}}{WC_{j}}\right]^{\sigma_{j}^{VA}} KDC_{j}$$

5.
$$LDC_{j} = B_{j}^{LD} \left[\sum_{l} \beta_{l,j}^{LD} LD_{l,j}^{-\rho_{j}^{LD}} \right]^{\frac{-1}{\rho_{j}^{LD}}}$$

6.
$$LD_{l,j} = \left[\frac{\beta_{l,j}^{LD} WC_j}{WTI_{l,j}} \right]^{\sigma_j^{LD}} \left(B_j^{LD} \right)^{\sigma_j^{LD}-1} LDC_j$$

7.
$$KDC_{j} = B_{j}^{KD} \left[\sum_{k} \beta_{k,j}^{KD} KD_{k,j}^{-\rho_{j}^{KD}} \right]^{\frac{1}{\rho_{j}^{KD}}}$$

8.
$$KD_{k,j} = \left[\frac{\beta_{k,j}^{KD} RC_j}{RTI_{k,j}} \right]^{\sigma_j^{KD}} \left(B_j^{KD} \right)^{\sigma_j^{KD}-1} KDC_j$$

9.
$$DI_{i,j} = aij_{i,j}CI_{j}$$

A1.2 INCOME AND SAVINGS

A1.2.1 Households

10.
$$YH_h = YHL_h + YHK_h + YHTR_h$$

11.
$$YHL_h = \sum_{l} \lambda_{h,l}^{WL} \left(W_l \sum_{j} LD_{l,j} \right)$$

12.
$$YHK_h = \sum_{k} \lambda_{h,k}^{RK} \left(\sum_{j} R_{k,j} KD_{k,j} \right)$$

13.
$$YHTR_h = \sum_{ag} TR_{h,ag}$$

14.
$$YDH_h = YH_h - TDH_h - TR_{gvt,h}$$

15.
$$CTH_h = YDH_h - SH_h - \sum_{agng} TR_{agng,h}$$

16.
$$SH_h = PIXCON^{\eta} sh0_h + sh1_h YDH_h$$

A1.2.2 Firms

17.
$$YF_f = YFK_f + YFTR_f$$

18.
$$YFK_f = \sum_{k} \lambda_{f,k}^{RK} \left(\sum_{j} R_{k,j} KD_{k,j} \right)$$

19.
$$YFTR_f = \sum_{ag} TR_{f,ag}$$

20.
$$YDF_f = YF_f - TDF_f$$

21.
$$SF_f = YDF_f - \sum_{ag} TR_{ag,f}$$

A1.2.3 Government

22.
$$YG = YGK + TDHT + TDFT + TPRODN + TPRCTS + YGTR$$

23.
$$YGK = \sum_{k} \lambda_{gvt,k}^{RK} \left(\sum_{j} R_{k,j} KD_{k,j} \right)$$

24.
$$TDHT = \sum_{h} TDH_{h}$$

25.
$$TDFT = \sum_{f} TDF_{f}$$

26.
$$TPRODN = TIWT + TIKT + TIPT$$

27.
$$TIWT = \sum_{l,j} TIW_{l,j}$$

28.
$$TIKT = \sum_{k,j} TIK_{k,j}$$

29.
$$TIPT = \sum_{i} TIP_{j}$$

30.
$$TPRCTS = TICT + TIMT + TIXT$$

31.
$$TICT = \sum_{i} TIC_{i}$$

32.
$$TIMT = \sum_{i} TIM_{i}$$

33.
$$TIXT = \sum_{i} TIX_{i}$$

34.
$$YGTR = \sum_{agng} TR_{gvt,agng}$$

35.
$$TDH_h = PIXCON^{\eta}ttdh0_h + ttdh1_hYH_h$$

36.
$$TDF_f = PIXCON^{\eta}ttdf 0_f + ttdf 1_f YFK_f$$

37.
$$TIW_{l,j} = ttiw_{l,j}W_lLD_{l,j}$$

38.
$$TIK_{k,j} = ttik_{k,j} R_{k,j} KD_{k,j}$$

39.
$$TIP_i = ttip_i PP_i XST_i$$

$$TIC_{i} = ttic_{i} \left[\left(PL_{i} + \sum_{ij} PC_{ij} tmrg_{ij,i} \right) DD_{i} + \left(\left(1 + ttim_{i} \right) PWM_{i} e^{-} + \sum_{ij} PC_{ij} tmrg_{ij,i} \right) IM_{i} \right]$$

41.
$$TIM_i = ttim_i PWM_i e IM_i$$

42.
$$TIX_i = ttix_i \left(PE_i + \sum_{ij} PC_{ij} tmrg_{ij,i}^X \right) EXD_i$$

43.
$$SG = YG - \sum_{agng} TR_{agng,gvt} - G$$

A1.2.4 Rest of the world

44.
$$YROW = e \sum_{i} PWM_{i} IM_{i} + \sum_{k} \lambda_{row,k}^{RK} \left(\sum_{j} R_{k,j} KD_{k,j}\right) + \sum_{agd} TR_{row,agd}$$

45.
$$SROW = YROW - \sum_{i} PE_{i}^{FOB} EXD_{i} - \sum_{agd} TR_{agd,row}$$

46.
$$SROW = -CAB$$

A1.2.5 Transfers

47.
$$TR_{agng,h} = \lambda_{agng,h}^{TR} YDH_{h}$$

48.
$$TR_{gvt,h} = PIXCON^{\eta}tr0_h + tr1_hYH_h$$

49.
$$TR_{ag,f} = \lambda_{ag,f}^{TR} YDF_f$$

50.
$$TR_{agng,gvt} = PIXCON^{\eta}TR_{agng,gvt}^{0}$$

51.
$$TR_{agd,row} = PIXCON^{\eta}TR_{agd,row}^{0}$$

A1.3 DEMAND

52.
$$PC_{i} C_{i,h} = PC_{i} C_{i,h}^{MIN} + \gamma_{i,h}^{LES} \left(CTH_{h} - \sum_{ij} PC_{ij} C_{ij,h}^{MIN} \right)$$

53.
$$GFCF = IT - \sum_{i} PC_{i} VSTK_{i}$$

54.
$$PC_iINV_i = \gamma_i^{INV}GFCF$$

55.
$$PC_iCG_i = \gamma_i^{GVT}G$$

56.
$$DIT_i = \sum_{i} DI_{i,j}$$

57.
$$MRGN_i = \sum_{ij} tmrg_{i,ij} DD_{ij} + \sum_{ij} tmrg_{i,ij} IM_{ij} + \sum_{ij} tmrg_{i,ij}^{X} EXD_{ij}$$

A1.4 PRODUCER SUPPLIES OF PRODUCTS AND INTERNATIONAL TRADE

58.
$$XST_{j} = B_{j}^{XT} \left[\sum_{i} \beta_{j,i}^{XT} XS_{j,i}^{\rho_{j}^{XT}} \right]^{\frac{1}{\rho_{j}^{XT}}}$$

59.
$$XS_{j,i} = \frac{XST_{j}}{\left(B_{i}^{XT}\right)^{1+\sigma_{j}^{XT}}} \left[\frac{P_{j,i}}{\beta_{j,i}^{XT} PT_{j}}\right]^{\sigma_{j}^{XT}}$$

60.
$$XS_{j,i} = B_{j,i}^{X} \left[\beta_{j,i}^{X} EX_{j,i}^{\rho_{j,i}^{X}} + (1 - \beta_{j,i}^{X}) DS_{j,i}^{\rho_{j,i}^{X}} \right]^{\frac{1}{\rho_{j,i}^{X}}}$$

61.
$$EX_{j,i} = \left[\frac{1 - \beta_{j,i}^{X}}{\beta_{j,i}^{X}} \frac{PE_{i}}{PL_{i}}\right]^{\sigma_{j,i}^{X}} DS_{j,i}$$

62.
$$EXD_i = EXD_i^o \left(\frac{e \ PWX_i}{PE_i^{FOB}}\right)^{\sigma_i^{XD}}$$

63.
$$Q_i = B_i^M \left[\beta_i^M I M_i^{-\rho_i^M} + (1 - \beta_i^M) D D_i^{-\rho_i^M} \right]^{\frac{-1}{\rho_i^M}}$$

64.
$$IM_i = \left[\frac{\beta_i^M}{1 - \beta_i^M} \frac{PD_i}{PM_i}\right]^{\sigma_i^M} DD_i$$

A1.5 PRICES

A1.5.1 Production

65.
$$PP_j = \frac{PVA_jVA_j + PCI_jCI_j}{XST_j}$$

66.
$$PT_j = (1 + ttip_j)PP_j$$

67.
$$PCI_{j} = \frac{\sum_{i} PC_{i}DI_{i,j}}{CI_{j}}$$

68.
$$PVA_j = \frac{WC_jLDC_j + RC_jKDC_j}{VA_j}$$

69.
$$WC_j = \frac{\sum_{l} WTI_{l,j} LD_{l,j}}{LDC_i}$$
 (redundant, given equations 5 and 6; see Appendix E2)

70.
$$WTI_{l,j} = W_l \left(1 + ttiw_{l,j} \right)$$

71.
$$RC_j = \frac{\sum_{k} RTI_{k,j} KD_{k,j}}{KDC_j}$$
 (redundant, given equations 7 and 8; see Appendix E3)

72.
$$RTI_{k,j} = R_{k,j} \left(1 + ttik_{k,j} \right)$$

73.
$$R_{k,j} = RK_k$$
, if capital is mobile

A1.5.2 International trade

74.
$$PT_{j} = \frac{\sum_{i} P_{j,i} XS_{j,i}}{XST_{i}}$$
 (redundant, given equations 58 and 59; see Appendix E4)

75.
$$P_{j,i} = \frac{PE_i EX_{j,i} + PL_i DS_{j,i}}{XS_{j,i}}$$

76.
$$PE_i^{FOB} = \left(PE_i + \sum_{ij} PC_{ij} tmrg_{ij,i}^X\right) \left(1 + ttix_i\right)$$

77.
$$PD_i = (1 + ttic_i) \left(PL_i + \sum_{ij} PC_i tmrg_{ij,i} \right)$$

78.
$$PM_{i} = (1 + ttic_{i}) \left((1 + ttim_{i}) e PWM_{i} + \sum_{ij} PC_{ij} tmrg_{ij,i} \right)$$

79.
$$PC_i = \frac{PM_i IM_i + PD_i DD_i}{Q_i}$$

A1.5.3 Price indexes

80.
$$PIXGDP = \sqrt{\frac{\sum_{j} PVA_{j}VAO_{j}}{\sum_{j} PVAO_{j}VAO_{j}} \frac{\sum_{j} PVA_{j}VA_{j}}{\sum_{j} PVAO_{j}VA_{j}}}$$

81.
$$PIXCON = \frac{\sum_{i} PC_{i} \sum_{h} C_{i,h}^{0}}{\sum_{ij} PC_{ij}^{0} \sum_{h} C_{ij,h}^{0}}$$

82.
$$PIXINV = \prod_{i} \left(\frac{PC_{i}}{PC_{i}^{0}}\right)^{\gamma_{i}^{INV}}$$

83.
$$PIXGVT = \prod_{i} \left(\frac{PC_{i}}{PC_{i}^{0}} \right)^{\gamma_{i}^{GVT}}$$

A1.6 EQUILIBRIUM

84.
$$Q_i = \sum_{h} C_{i,h} + CG_i + INV_i + VSTK_i + DIT_i + MRGN_i$$

85.
$$\sum_{i} LD_{l,j} = LS_{l}$$

$$86. \sum_{j} KD_{k,j} = KS_k$$

87.
$$IT = \sum_{h} SH_{h} + \sum_{f} SF_{f} + SG + SROW$$

88.
$$\sum_{i} DS_{j,i} = DD_i$$

89.
$$\sum_{i} EX_{j,i} = EXD_{i}$$

A1.7 GROSS DOMESTIC PRODUCT

90.
$$GDP^{BP} = \sum_{i} PVA_{i}VA_{j} + TIPT$$

91.
$$GDP^{MP} = GDP^{BP} + TPRCTS$$

92.
$$GDP^{IB} = \sum_{l,j} W_l LD_{l,j} + \sum_{k,j} R_{k,j} KD_{k,j} + TPRODN + TPRCTS$$

93.
$$GDP^{FD} = \sum_{i} PC_{i} \left[\sum_{h} C_{i,h} + CG_{i} + INV_{i} + VSTK_{i} \right] + \sum_{i} PE_{i}^{FOB} EXD_{i} - e\sum_{i} PWM_{i} IM_{i}$$

A2. Sets

A2.1 INDUSTRIES AND COMMODITIES

All industries: $j, jj \in J = \{J_1, ..., J_j, ...\}$

All commodities: $i, ij \in I = \{I_1, ..., I_i, ...\}$

A2.2 PRODUCTION FACTORS

Labor categories: $l \in L = \{L_1, ..., L_l, ...\}$

Capital categories: $k \in K = \{K_1, ..., K_k, ...\}$

A2.3 AGENTS

All agents: $ag, agj \in AG = H \cup F \cup \{GVT, ROW\} = \{H_1, ..., H_h, ..., F_1, ..., F_f, ..., GVT, ROW\}$

Household categories: $h, hj \in H \subset AG = \{H_1, ..., H_h, ...\}$

Firm categories: $f, fj \in F \subset AG = \{F_1, ..., F_f, ...\}$

Non governmental agent:

$$agng \in AGNG \subset AG = H \cup F \cup \{ROW\} = \{H_1, ..., H_h, ..., F_1, ..., F_f, ..., ROW\}$$

Domestic agents: $agd \in AGD \subset AG = H \cup F \cup \{GVT\} = \{H_1, ..., H_h, ..., F_1, ..., F_f, ..., GVT\}$

A3. Variables

NOTE: In what follows, the word "taxes" should be understood as "taxes, minus subsidies".

A3.1 VOLUME VARIABLES

 $C_{i,h}$: Consumption of commodity *i* by type *h* households

 $C_{i,h}^{MIN}$: Minimum consumption of commodity i by type h households

 CG_i : Public consumption of commodity i

 CI_i : Total intermediate consumption of industry j

 DD_i : Domestic demand for commodity *i* produced locally

 $DI_{i,j}$: Intermediate consumption of commodity i by industry j

 DIT_i : Total intermediate demand for commodity i

 $DS_{i,i}$: Supply of commodity i by sector j to the domestic market

 $EX_{i,i}$: Quantity of product i exported by sector j

 EXD_i : World demand for exports of product i

 IM_i : Quantity of product i imported

 INV_i : Final demand of commodity i for investment purposes

 $KD_{k,j}$: Demand for type k capital by industry j

 KDC_i : Industry j demand for composite capital

 KS_{ν} : Supply of type k capital

 $LD_{l,j}$: Demand for type l labor by industry j

 LDC_i : Industry j demand for composite labor

 LS_l : Supply of type l labor

 $MRGN_i$: Demand for commodity i as a trade or transport margin

 Q_i : Quantity demanded of composite commodity i

 VA_i : Value added of industry j

 $VSTK_i$: Inventory change of commodity i

 $XS_{i,i}$: Industry j production of commodity i

 XST_i : Total aggregate output of industry j

A3.2 PRICE VARIABLES

e: Exchange rate⁶; price of foreign currency in terms of local currency

⁶ The default choice of numeraire in PEP-1-1 is the exchange rate e. This is implemented by fixing the value of e as exogenous. But the choice of numeraire in a CGE model is arbitrary

 $P_{i,i}$: Basic price of industry j's production of commodity i

 PC_i : Purchaser price of composite comodity i (including all taxes and margins)

 PCI_{i} : Intermediate consumption price index of industry j

 PD_i : Price of local product i sold on the domestic market (including all taxes and

margins)

 PE_i : Price received for exported commodity i (excluding export taxes)

 PE_i^{FOB} : FOB price of exported commodity *i* (in local currency)

PIXCON: Consumer price index

PIXGDP: GDP deflator

PIXGVT: Public expenditures price index

PIXINV: Investment price index

 PL_i : Price of local product i (excluding all taxes on products)

 PM_i : Price of imported product *i* (including all taxes and tariffs)

 PP_i : Industry j unit cost, including taxes directly related to the use of capital and

labor, but excluding other taxes on production

 PT_i : Basic price of industry j's output

PVA;: Price of industry j value added (including taxes on production directly

related to the use of capital and labour)

*PWM*_i: World price of imported product *i* (expressed in foreign currency)

 PWX_i : World price of exported product i (expressed in foreign currency)

 $R_{k,j}$: Rental rate of type k capital in industry j

 RC_i : Rental rate of industry j composite capital

 RK_k : Rental rate of type k capital (if capital is mobile)

 $RTI_{k,j}$: Rental rate paid by industry j for type k capital, including capital taxes

 W_l : Wage rate of type l labor

 WC_i : Wage rate of industry j composite labor

 $WTI_{l,i}$: Wage rate paid by industry j for type l labor, including payroll taxes

A3.3 NOMINAL (VALUE) VARIABLES

CAB: Current account balance

 CTH_h : Consumption budget of type h households

(although the interpretation of results can be more or less easy, depending on which numeraire is selected).

G: Current government expenditures on goods and services

 GDP^{BP} : GDP at basic prices

 GDP^{FD} : GDP at purchasers' prices from the perspective of final demand

 GDP^{IB} : GDP at market prices (income-based)

 GDP^{MP} : GDP at market prices

GFCF: Gross fixed capital formation

IT: Total investment expenditures

 SF_f : Savings of type f businesses

SG: Government savings

 SH_h : Savings of type h households

SROW: Rest-of-the-world savings

 TDF_f : Income taxes of type f businesses

TDFT: Total government revenue from business income taxes

 TDH_h : Income taxes of type h households

TDHT: Total government revenue from household income taxes

 TIC_i : Government revenue from indirect taxes on product i

TICT: Total government receipts of indirect taxes on commodities

 $TIK_{k,j}$: Government revenue from taxes on type k capital used by industry j

TIKT: Total government revenue from from taxes on capital

 TIM_i : Government revenue from import duties on product i

TIMT: Total government revenue from import duties

 TIP_i : Government revenue from taxes on industry j production (excluding taxes directly

related to the use of capital and labor)

TIPT: Total government revenue from production taxes (excluding taxes directly related

to the use of capital and labor)

 $TIW_{l,i}$: Government revenue from payroll taxes on type l labor in industry j

TIWT: Total government revenue from payroll taxes

 TIX_i : Government revenue from export taxes on product i

TIXT: Total government revenue from export taxes

TPRCTS: Total government revenue from taxes on products and imports

TPRODN: Total government revenue from other taxes on production⁷

⁷ That is, taxes on production other than taxes on products and taxes and duties on imports (see Appendix B1).

 $TR_{ag,agj}$: Transfers from agent agj to agent ag

 YDF_f : Disposable income of type f businesses

 YDH_h : Disposable income of type h households

 YF_f : Total income of type f businesses

 YFK_f : Capital income of type f businesses

 $YFTR_f$: Transfer income of type f businesses

YG: Total government income

YGK : Government capital income

YGTR: Government transfer income

 YH_h : Total income of type h households

 YHK_h : Capital income of type h households

 YHL_h : Labor income of type h households

 $YHTR_h$: Transfer income of type h households

YROW: Rest-of-the-world income

A3.4 RATES AND INTERCEPTS

 $sh0_h$: Intercept (type h household savings)

 shl_h : Slope (type h household savings)

 $tr0_h$: Intercept (transfers by type h households to government)

 $tr1_h$: Marginal rate of transfers by type h households to government

 $ttdf \, 0_f$: Intercept (income taxes of type f businesses)

 $ttdf 1_f$: Marginal income tax rate of type f businesses

 $ttdh0_h$: Intercept (income taxes of type h households)

 $ttdh1_h$: Marginal income tax rate of type h households

 $ttic_i$: Tax rate on commodity i

 $ttik_{k,j}$: Tax rate on type k capital used in industry j

 $ttim_i$: Rate of taxes and duties on imports of commodity i

 $ttip_{j}$: Tax rate on the production of industry j

 $ttiw_{l,i}$: Tax rate on type l worker compensation in industry j

 $ttix_i$: Export tax rate on exported commodity i

A4. Parameters

 $aij_{i,j}$: Input-output coefficient

 B_i^{KD} : Scale parameter (CES – composite capital)

 B_i^{LD} : Scale parameter (CES – composite labor)

 B_i^M : Scale parameter (CES – composite commodity)

 B_i^{VA} : Scale parameter (CES – value added)

 $B_{j,i}^{X}$: Scale parameter (CET – exports and local sales)

 B_i^{XT} : Scale parameter (CET – total output)

 $\beta_{k,j}^{KD}$: Share parameter (CES – composite capital)

 $\beta_{l,j}^{LD}$: Share parameter (CES – composite labor)

 β_i^M : Share parameter (CES – composite commodity)

 β_i^{VA} : Share parameter (CES – value added)

 $\beta_{i,i}^{X}$: Share parameter (CET – exports and local sales)

 $\beta_{i,i}^{XT}$: Share parameter (CET – total output)

 η : Price elasticity of indexed transfers and parameters

 γ_i^{GVT} : Share of commodity i in total current public expenditures on goods and

services

 γ_i^{NV} : Share of commodity i in total investment expenditures

 $\gamma_{i,h}^{LES}$: Marginal share of commodity i in type h household consumption budget

 io_j : Coefficient (Leontief – intermediate consumption)

 $\lambda_{ag,k}^{RK}$: Share of type k capital income received by agent ag

 $\lambda_{ag,agj}^{TR}$: Share parameter (transfer functions)

 $\lambda_{h,l}^{WL}$: Share of type *l* labor income received by type *h* households

 ρ_j^{KD} : Elasticity parameter (CES – composite capital); $-1 < \rho_j^{KD} < \infty$

 ρ_{j}^{LD} : Elasticity parameter (CES – composite labor); $-1 < \rho_{j}^{LD} < \infty$

 ρ_i^M : Elasticity parameter (CES – composite commodity); $-1 < \rho_i^M < \infty$

 ρ_{j}^{VA} : Elasticity parameter (CES – value added); $-1 < \rho_{j}^{VA} < \infty$

 $\rho_{j,i}^X$: Elasticity parameter (CET – exports and local sales); $1 < \rho_{j,i}^X < \infty$

 ρ_j^{XT} : Elasticity parameter (CET – total output); $1 < \rho_j^{XT} < \infty$

 σ_j^{KD} : Elasticity of substitution (CES – composite capital); $0 < \sigma_j^{KD} < \infty$

 σ_{j}^{LD} : Elasticity of substitution (CES – composite labor); $0 < \sigma_{j}^{LD} < \infty$

 $\sigma_i^{\scriptscriptstyle M}$: Elasticity of substitution (CES – composite commodity); $0 < \sigma_i^{\scriptscriptstyle M} < \infty$

 $\sigma_{j}^{V\!A}$: Elasticity of transformation (CES – value added); $0 < \sigma_{j}^{V\!A} < \infty$

 $\sigma_{j,i}^X$: Elasticity of transformation (CET – exports and local sales); $0 < \sigma_{j,i}^X < \infty$

 σ_i^{XD} : Price elasticity of the world demand for exports of product i

 σ_{j}^{XT} : Elasticity of transformation (CET – total output); $0 < \sigma_{j}^{XT} < \infty$

 $tmrg_{i,ij}$: Rate of margin i applied to commodity ij

 $tmrg_{i,ij}^{X}$: Rate of margin i applied to exported commodity ij

 v_i : Coefficient (Leontief – value added)