Determinants of farmers' preference for alternative animal health service providers in Kenya: A proportional hazard application

Patrick Irungu, PhD - UON
John Omiti, PhD - KIPPRA
Lawrence G. Mugunieri, PhD - FEWSNET

Outline

Introduction
Problem statement
Methods
Some Results

Introduction

- Kenya has a great variety of AnGR
- Livestock disease major hindrance to increased livestock productivity
- Liberalization of the economy in early 1990s:
- Many entrants into the veterinary services market including:
 - **Animal health assistants**

Introduction...

- Rationale for liberalization: to reduce State involvement in sectors/activities for which it did not have comparative advantage
- Results:
 - Success in high agricultural potential areas
 - Failure in the ASALs due to market failure – unique characteristics of aridity, remoteness, high poverty & insecurity – high transaction costs

statement

- Liberalization of veterinary services meant farmers had 6 main animal health services providers to choose from:
 - Public vets
 - Private vets
 - AHAs
 - **CBAHWs**
 - **Village pharmacies**
 - Ethnovot practitionors

Methods

- A proportional hazard model (PHM) used
- PHM evaluates effect of time-to-event outcomes on a set of covariates

$$h_{ik}(t, X_t) = h_{ik}(t) * \exp(X_t \beta_i)$$

• Where:

 $h_{ik}(t) = ith individual's hazard function for choosing the kth alternative at time t$

X_t = characteristics of chooser & the choice

 β = unknown parameters

CHOICE= β_1 AGE + β_2 SEX + β_3 EDUC + β_4 TLU + β_5 OFFINC + β_6 LANDTOT + β_7 WTHSTAT + β_8 DISTANCE + β_9 EXPEND

Some Results

Parameter Standar Chi-

Hazard

Variable

DF

7 41 14 51 6				U	
		estimate	d error	square	ratio
CBAHWs	1	3.433***	1.129	9.242	30.982
VETs	1	2.128*	1.120	3.608	8.400
AHAs	0	0	-	-	-
AGECBAH	1	-0.032*	0.017	3.374	0.969
W					
AGEVET	1	-0.014	0.017	0.690	0.986
AGEAHA	0	0	-	-	-
SEXCBAH	1	-0.156	0.599	0.068	0.855
W			_		
SEXVET		-0.994*	0.570	3.048	0.370
SEXAHA	0	0	-	-	-
EDUCCBA	1	-0.851*	0.473	3.237	0.427
HW					
EDUCVET	1	-0.401	0.491	0.668	0.669

Thank you