
Bernard Decaluwe Michiel Keyzer Johan Kirsten & Ferdi Meyer David Laborde

THE MODELING COMPONENT

Inception Workshop of the African Growth and Development Policy (AGRODEP) Modeling Consortium October 28-29, 2010 Dakar, Senegal

SETTING THE STAGE

THE MODELING COMPONENT

- Why quantitative analysis is needed in Africa?
- Already a long history, but still important needs
- Why modeling efforts should be tied to a coordinated effort on data?
- Why modeling efforts should be embedded in a network approach of research?

GOALS

- Providing the state of the art tools to build a dynamic research community that can respond to the emerging and long-term needs of CAADP growth and poverty reduction agenda
- Developing a library of state of the art modeling tools
- Having methodologies implementable in Africa
- Supporting innovation joint efforts by leading research groups on the world stage and African researchers

MAIN TOPICS

- Agricultural production and consumption
- Commodity Prices
- Trade negotiations
- Infrastructure
- Natural resources management
- Climate Change
- Governance and institutions

Typology of Models

Simulation Models

- Partial Equilibrium
 - Spatial
 - Non Spatial
- General Equilibrium
 - Single-Country
 - Multi-Country
- Recursive Dynamic / Inter-temporal
- Deterministic / Stochastic

Typology of Models

- Econometric and Statistics models
 - Parametric
 - Non Parametric
 - Other methodologies (frequency based analysis, categorical analysis, polling techniques...)

A HARMONIZED FRAMEWORK

- Each model will be fully documented
- Several models (when possible) for one research question
 - Pros and Cons matrix for guiding the users
- Harmonization of concepts and explanation of differences when needed
- Limited number of languages (GAMS, STATA...)
- Data packages for each model developed with the Data component
- Capacity building on each methodology developed with the Network component
 - Training
 - Guided implementations

GOALS FOR THE FIRST YEAR (I)

- Having a significant set of models ready for implementation/use. Fully documented and "adapted"
- For simulation models:
 - Deterministic
 - Partial Equilibrium models
 - Tariff line analysis for trade negotiation
 - Multi markets for agricultural production/consumption (e.g. BFAP model)
 - Spatial trade models

GOALS FOR THE FIRST YEAR (II)

- General Equilibrium models
 - Single country (PEP & IFPRI models)
 - Multi country (MIRAGE model)
- For estimation models:
 - Parametric
 - Gravity like models (trade oriented)
 - Estimation of supply and demand (different approach: panel, cross section etc.)

AN INNOVATION WINDOW TO ADDRESS 3 GOALS

Tailor-made modeling tools for policy analysis

- Adapting existing models to deal with Africa challenges
 - oGeneral limits of such models
 - African specificities (agronomics, social)
- Developing new methodologies to solve new/unresolved issues
- Bringing African researchers on the front stage of international research
 - Promoting joint research among African researchers
 - and between African researchers and international networks
- Mix of short/medium/long term initiatives:

ADVANCED TOPICS

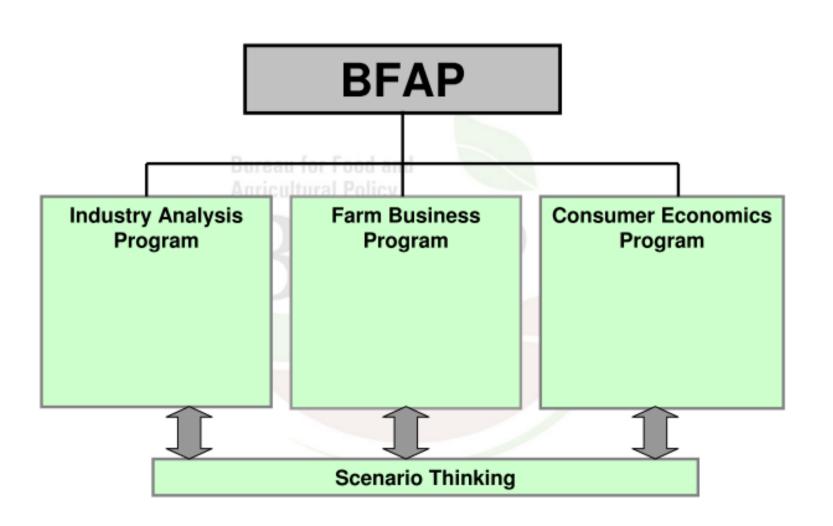
- Agronomic specificities
 - Why African yields are low?
 - Crop production: water, nutritients, land degradation
 - Animal production: disease, pastoralism behaviour
- Social specificities
 - Household decisions (consumption & production)
 - Formal/Informal social safety nets
- Institutional specificities
 - Markets, Non markets and Market segmentations:
 - Missing markets? land, self sufficiency consumption, spot vs future markets.
 - Spatial segmentation and the role of infrastructure (where, when and how?)
 - Natural resources: water management, contracts, Dutch disease, rent sharing
- Monitoring policies and implementation

- Large scale spatial models
- Advanced partial equilibrium models
- CGE with relevant household decomposition, microsimulations, behavior descriptions, physical linkages etc.
- Integrated CGE/PE (math. program.) approach
- Integrated analysis of real and discrete survey data and geographical maps
- New statistical techiques (Non parametric techniques, Quantile regression, Support Vector Machines, impact assessment/policy treatment)

EXPANDING EXISTING CAPACITIES

16

The Example of the Bureau For Food And Agricultural Policy in South Africa


BFAP: BACKGROUND AND GENESIS

- Founded in 2004
- Virtual network to inform decision making within Food Systems
- Multidisciplinary team: 28 people (15 full time core)
- Affiliation with SA institutions: Universities of Pretoria & Stellenbosch, Dept of Agriculture Western Cape
- Affiliation with international institutions: FAPRI (Missouri),
 FAO-OECD, agribenchmark,
- Clients: A wide number of governments, companies and institutions (local and international)

ANALYTICAL FRAMEWORK

Main Features

- Development and maintenance of intelligence network to provide timely and accurate analysis and projections of Food Systems.
 - General industry analyses commodity balance sheets, supply chains, prices, marketing margins etc.
 - Commodity market analyses equilibrium pricing conditions, future markets, trade flows etc.
 - Policy analyses understanding the impact of policies on the value chains
 - Modelling:
 - Multimarket partial equilibrium models
 - Farm level simulation models
 - Consumer economics consumption trends and patterns
 - Scenario planning Risk and Uncertainty

MODELLING FRAMEWORK

FAPRI and OECD - Global Models Agribenchmark — International farm-level data

GDP

Exchange rate

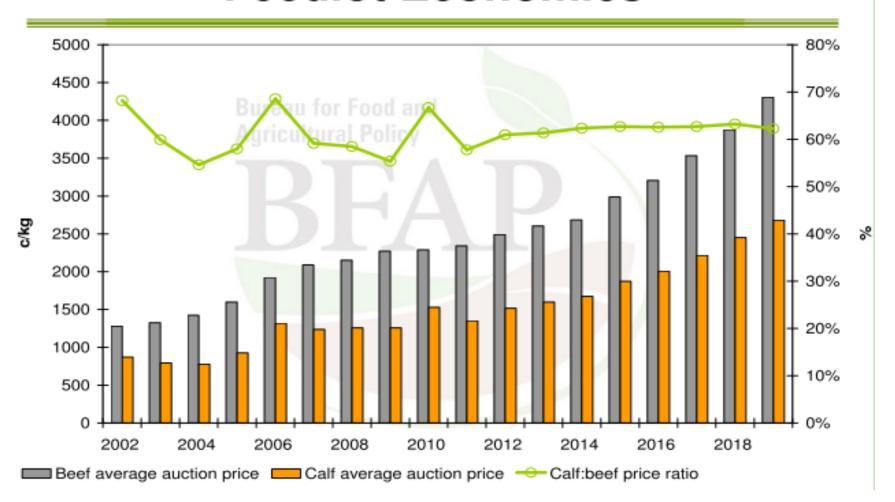
Interest rate

Consumer Trends

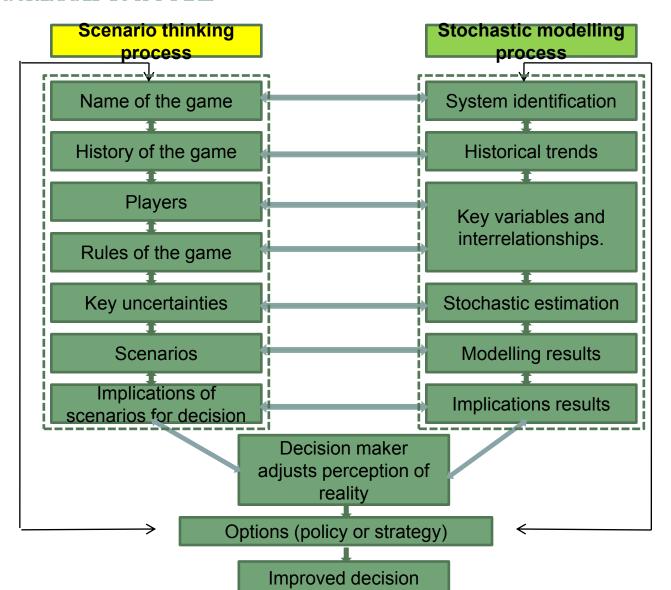
Weather

Policies

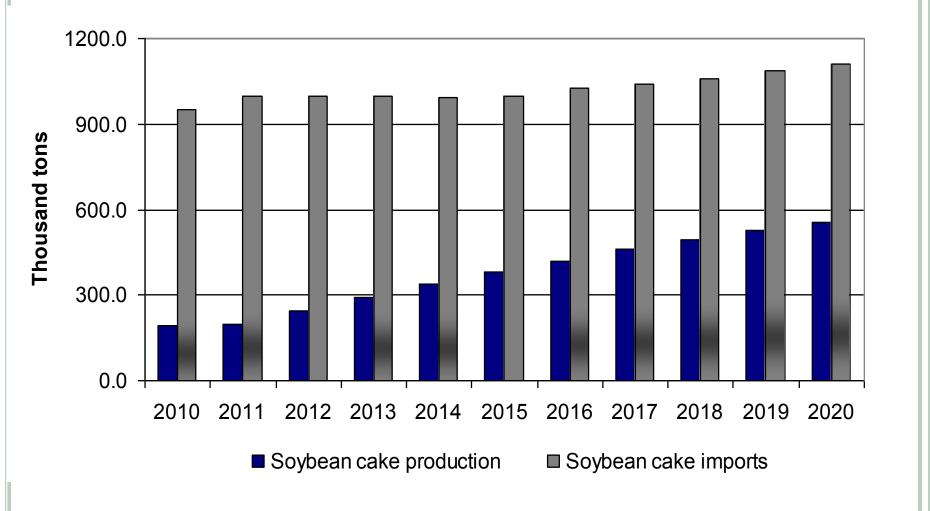
Population


BFAP
Farm level financial
models

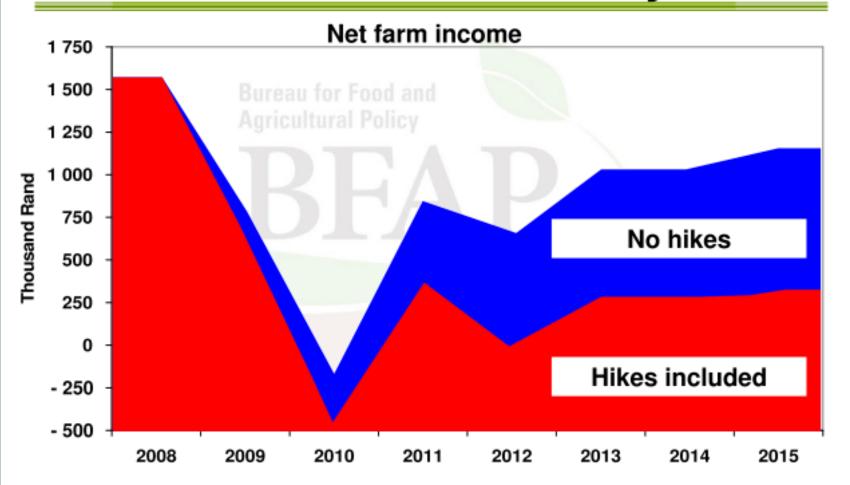
AN EXAMPLE OF FORECAST ANALYSIS

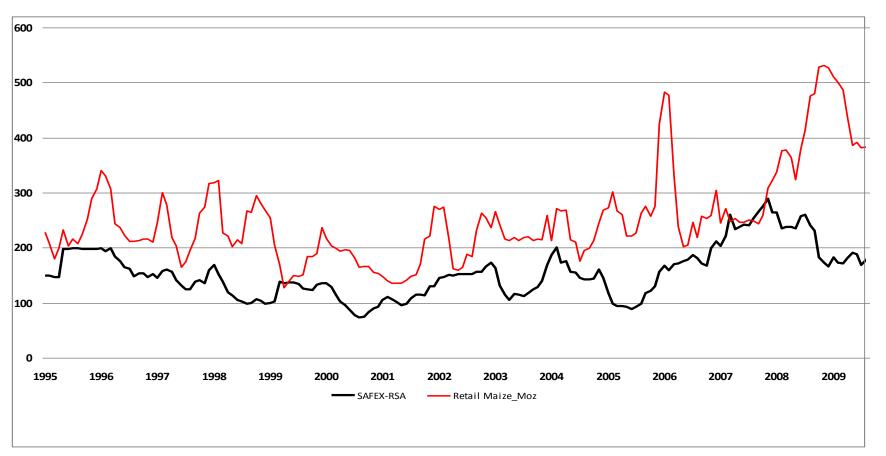

www.agrodep.org

Feedlot Economics


SCENARIO ANALYSIS

SCENARIO ANALYSIS


PROTEIN FOR ANIMAL FEED: 2020 SCENARIOS


SCENARIO ANALYSIS

Scenario: Electricity

EXPANDING IN SOUTHERN AFRICA

Cointegration of Staple Food Markets - Southern Africa

LINKING WITH AGRODEP

New Projects and Planning: Southern African Outlook

- Collaboration between BFAP, FAPRI, MSU and FAO
- o Involves:
 - Build on existing capacity
 - Training of African modellers & market analysts – leverage on Collaborative Masters Program (Gates Foundation)
 - Data collection & validation, market analysis, model development,
 - Refine the Aglink Cosimo modelling programme at the FAO

What should be done to deliver effectively? – Lessons learned

- Dynamic nature of virtual network key to have focused outputs
- Design standarised products to be delivered annually – ensures update of all components and provides momentum and branding.
- Build public-private partnerships improved understanding of food systems…especially with lack of data (South African experience)
- Managing risk loosing intellectual capacity due to rapid expansion of agricultural industry in region.
- Building networks into region essential to maintain capacity

OPEN DISCUSSION