AGRODEP Household survey data course Dakar, 8-10 October 2012

Introduction to microeconometrics

Overview

- Purpose and scope of econometrics
- Type of data
- Causality
- Type of models
- Simple linear regression model: theory and application

Purpose and scope of econometrics

- Estimating economic relationships
- Testing economic theories
- Evaluating programs/policy
- Forecasting

....in general

finding association among phenomena

Type of data

- Cross-section \rightarrow **I**
- Time series \rightarrow **o**
- Cross-section (different unit) over time: pooled cross-section \rightarrow
- Cross-section (same unit) over time: panel (longitudinal) → ■

Non-experimental vs/ experimental

Causality

All econometric applications must be extremely cautious on:

- Problem of other factors being equal
- Problem of spurious correlation

Type of models

- Linear regression (simple, multiple): OLS, IV and 2SLS
- Simultaneous equation
- Binary regression: again OLS (LPM)
- Limited dependent variable: binary response probit and logit, multinomial probit and logit, tobit and censored regression, count (poisson), sample selection (heckit)
- Advanced time series: IDL, geometric (Koyck) distributed lag, RDL, ECM

The basic model (simplest case) is: $y=\theta_0+\theta_1x+u$ (1)

where y is the *dependent* variable x is the *independent* variable u is the *error term* (or unobserved *disturbance*)

What do β_0 and β_1 represent?

Let's assume that $\Delta u=0$ (holding other factors in u unchanged):

 $\Delta y = \theta_1 \cdot \Delta x$

- Then, \mathcal{B}_1 is the **slope** parameter (linear relationship between x and y) and \mathcal{B}_0 is the **intercept** parameter.
- $\boldsymbol{\beta}_1$ is the most interesting parameter in econometrics

Let's go back on (1). Now let's assume

E(u)=0

how far is it from reality?

Is this condition enough for (1) to be valid?

What about u was not linearly correlated with x $(x^2, \log x,...)$?

E(u|x)=E(u)=0 (2)

This is the **zero conditional mean assumption**

Taking the E(.) of (1) (cond. on x) and using (2): $E(y|x) = \theta_0 + \theta_1 x$ **population regression function (PRF)** linear in x. \rightarrow Graph

How do we calculate β_0 and β_1 ?

