AGRODEP Household survey data course Dakar, 8-10 October 2012

Sample design

Outline

- Purpose, concepts, and definitions
- Simple Random Sampling

-Sampling and Non-sampling errors, confidence intervals, sample size, population size, sampling for rare events

- Multi-stage and Cluster Sampling
- Stratification
- Weighting
- Design Effects
- Sampling for Impact Evaluations
- Group Exercise

What we are **not** going to talk about...

- Being an expert in sample design
- Non-random designs (matching, RDD, etc)

Purpose of sampling

- Why sampling?
 - Saves **cost** compared to full enumeration
 - Easier to control quality of sample
 - More timely results from sample data
 - Measurement can be destructive

Sampling Concepts and Definitions Unit of analysis

• The level at which a measurement is taken

• Most common units of analysis are persons, households, farms, and economic establishments

Target population or universe

• The complete collection of *all the units of analysis* to study.

• Examples: population living in households in a country; students in primary schools

Sampling frame

- List of all the units of analysis whose characteristics are to be measured
- Comprehensive, non-overlapping and must not contain irrelevant elements
- Should be updated to ensure complete coverage
- Examples: list of establishments; census; civil registration

Parameter / Estimate

- Objective of sampling is to estimate parameters of a population
- Quantity computed from all N values in a population set
- Typically, a descriptive "true value" measure of a population, such as mean, variance
 - Poverty rate, average income, etc.

Sampling Concepts and Definitions Unbiased Estimator

• Estimator - mathematical formula or function using sample results to produce an estimate for the entire population

$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$$

- When the mean of individual sample estimates equals the population parameter, then the estimator is unbiased
- Formally, an estimator is unbiased if the expected value of the (sample) estimates is equal to the (population) parameter being estimated (where k is the number of experiments).

$$\frac{\hat{\theta}_1 + \hat{\theta}_2 + \ldots + \hat{\theta}_k}{k} \xrightarrow[k \to \infty]{} \theta$$

Central Limit Theorem

- In making inference from samples we rely on CLT "For reasonably large sample sizes (30 and above), the distribution of possible sample means will tend towards a normal distribution"
- Properties of sample estimators derived theoretically from pattern of results from repeated samples n times (sampling distribution)

Types of Sampling

- Random
- Non-random
 - Purposive
 - Quota
 - Accidental
 - Networking

Non-Random Sampling

- Purposive or judgmental sampling units selected based on special criteria
 - select areas/units for conducting survey pilots
 - "wise old men"
 - not possible to make inferences to population
- Quota sampling
 - Used for convenience, sometimes incorrectly treated as a random sample
 - Select % within different population groups; selection left to enumerators
 - Sample does not represent population, estimates will be biased

Non-Random Sampling (cont'd)

- Accidental
 - Pick as you go
- Networking
 - Hard to find groups
 - People connected (migrants abroad)
- ...can be due to past sampling! -> Panel Survey

...both measures are affected by sampling errors (e_{2001} et e_{2005})

The error of the difference Y_{2005} - Y_{2001} is...

... $\sqrt{(e_{2001}^2 + e_{2005}^2)}$ if the two samples are independent ...only $\sqrt{(e_{2001}^2 + e_{2005}^2 - 2\varrho[Y_{2001}, Y_{2005}])}$ if the sample is the same

Advantages and disadvantages of panels

Analytical advantages

- Can measure changes better
- Permit understanding better why things changed
- Permits correlating past and present behavior

Analytical disadvantages

- Become progressively less representative of the population

Practical advantages

No sampling design needed for the second and subsequent surveys

• Practical

disadvantages

- Sample attrition
- Much harder to manage
- Better to design them prospectively rather than in afterthought

Nonresponse

- •Possible solutions...
 - **Replace non-respondents with similar households**
 - □ Increase the sample size to compensate for it
 - Use correction formulas
 - Use imputation techniques (hot-deck, cold-deck, warm-deck, etc.) to simulate the answers of non-respondents
 - ☑ None of the above

The best way to deal with nonresponse is to prevent it

Lohr, Sharon L. Sampling: Design & Analysis (1999)

Source: "Some factors affecting Non-Response." by R. Platek. 1977. Survey Methodology. 3. 191-214