Tools to measure price transmission from international to local markets

Presented by:
Nicholas Minot

AGRODEP Workshop on Tools for Food Prices and Price Volatility Analysis

June 6-7, 2011 • Dakar, Senegal

Please check the latest version of this presentation on:
http://www.agrodep.org/first-annual-workshop
Tools to measure price transmission from international to local markets

Nicholas Minot
International Food Policy Research Institute

AGRODEP Members’ Meeting and Workshop
6-8 June 2011
Dakar, Senegal
Outline

• What is price transmission?
• Why does price transmission occur (nor not)?
• Review measures of price transmission
 – Simple percentage changes
 – Correlation analysis
 – Regression analysis
 – Co-integration analysis
• Results of study of impact of world markets on African food prices
• Conclusions
What is price transmission?

• Price transmission is when a change in one price causes another price to change

• Three types of price transmission:
 – Spatial: Between two markets for same commodity
 • Price of maize in South Africa \rightarrow price of maize in Mozambique
 – Vertical: Between two points in supply chain
 • Price of wheat \rightarrow price of flour
 – Cross-commodity: Between two commodities
 • Price of maize \rightarrow price of rice
Why is it useful to study price transmission?

- Study of price transmission helps to understand causes of changes in prices, necessary to address root causes
 - Example: If little price transmission from world markets, then trade policy will not be effective in reducing volatility
- Study of price transmission may help forecast prices based on trends in related prices
 - Example: If changes in soybean prices transmitted to sunflower markets, then soybean futures markets may predict sunflower prices
- Study of price transmission helps diagnose poorly functioning markets
 - Example: If two markets are close together, but show little price transmission, this may indicate problems with transportation network or monopolistic practices
Why does spatial price transmission occur?

- **Spatial price transmission** occurs because of flows of goods between markets & spatial arbitrage
 - If price gap > marketing costs, trade flows will narrow gap
 - If price gap < marketing cost, no flows
 - Therefore, price gap <= marketing cost
Why does vertical price transmission occur?

- Vertical price transmission occurs because of ability to convert raw product into processed product at certain cost; “processing arbitrage”
Why does **cross-commodity** price transmission occur?

- **Cross-commodity price transmission** occurs because of substitution in consumption and/or production.
Why might price transmission *not* occur?

- High transportation cost makes trade unprofitable
 - Or high processing costs makes processing unprofitable
- Trade barriers make trade unprofitable
- Lack of information about prices in other markets
- Long time to transport from one market to another (lagged transmission)
- In case of inter-commodity transmission, two commodities are not close substitutes for each other
What is an elasticity of price transmission?

• Price transmission elasticity: % change in one price for each 1% increase in the other price

• Example: if a 10% increase in the world price of maize causes a 3% increase in the local price of maize, then price transmission elasticity is:

\[
0.03 / 0.10 = 0.3
\]
What is an elasticity of price transmission?

- Elasticity of 1.0 is not always “perfect transmission”

Example:
- World price = $200/ton
- Local price = $400/ton
- Perfect transmission would be if a $50 increase in world price → $50 increase in local price (assuming fixed margin)
- But transmission elasticity in this case would be
 \[
 \frac{50/400}{50/200} = \frac{.125}{.250} = 0.50
 \]

- For imports, perfect transmission elasticity are < 1.0
- For exports, perfect transmission elasticity are > 1.0
How is price transmission measured?

- There are several methods – four are discussed here
 - Ratio of percentage changes between two time periods
 - Correlation coefficient
 - Regression analysis
 - Co-integration analysis
1. Ratio of percentage changes

Ratio of percentage changes between two time periods

<table>
<thead>
<tr>
<th></th>
<th>Price of maize in Dar es Salaam</th>
<th>Price of US #2 Yellow Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US$ / ton</td>
<td>US$ / ton</td>
</tr>
<tr>
<td>June 2007</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>June 2008</td>
<td>239</td>
<td>287</td>
</tr>
<tr>
<td>% Change</td>
<td>99%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Elasticity of transmission is 1.34 (= .99 / .74)

Note that both prices increased by about $120/ton
1. Ratio of percentage changes - example

- Disadvantage: Crude method, only uses two points in time and does not take trends into account
2. Correlation coefficient

- Indicates the degree of relatedness of two variables
- Two related measures
 - Pearson correlation coefficient = r
 - Coefficient of determination = $R^2 = r \times r$
 - Both range from 0 (no relation) to 1 (perfect relation)
2. Correlation coefficient

- Advantage
 - Easy to calculate (can use Excel)
 - Easy to understand (R2 as pct explained)

- Disadvantages
 - Only takes into account two prices, excludes effect of other prices and variables
 - Only considers relationship between prices at same time, does not take into account lags in effect
 - Cannot identify causality
 - Misleading results if prices are non-stationary
3. Regression analysis

- Multiple regression analysis:
 \[Y = a + bX_1 + cX_2 + \ldots + \epsilon = a + \sum b_iX_i + \epsilon \]

- Advantages
 - Gives information to calculate transmission elasticity
 - Can test relationships statistically
 - Can take into account lagged effects, inflation, and seasonality
 - Can analyze relationship of > 2 prices

- Disadvantages
 - Difficult to identify causality
 - Misleading results if data are non-stationary
Non-stationarity - Definition

- What is a non-stationary variable?

<table>
<thead>
<tr>
<th>Stationary variable Y</th>
<th>Non-stationary variable Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_t = a + \rho Y_{t-1} + bX_t + \varepsilon_t$ where $</td>
<td>\rho</td>
</tr>
<tr>
<td>Tends to go back toward mean</td>
<td>Does not tend to go back to mean, “random walk”</td>
</tr>
<tr>
<td>Finite variance</td>
<td>Infinite variance as $N \to \infty$</td>
</tr>
</tbody>
</table>

![Graphs showing time series data](image-url)
Non-stationarity - Problem

• Why are non-stationary variables a problem?
 – One of the assumptions of OLS regression analysis is that the error term has a constant variance
 – When a variable is non-stationary, the \(\text{var}(\varepsilon) \) changes over time. As \(N \to \infty \), \(\text{var}(\varepsilon) \to \infty \)
 – Since assumptions are violated, regression analysis will give misleading results
 – With non-stationary variables, regression analysis will often indicate that there is a statistically significant relationship even when there is NO relationship
 – Excel demonstration
 – Unfortunately, many time-series variables are non-stationary
Non-stationarity – Testing

- Augmented Dickey-Fuller test

\[\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \delta_1 \Delta y_{t-1} + \cdots + \delta_{p-1} \Delta y_{t-p+1} + \varepsilon_t \]

- Testing \(\gamma = 0 \) tests the null hypothesis of non-stationarity
- Intuition:
 - If data are stationary, a high value of \(y_{t-1} \) implies that \(\Delta y_t \) will be negative as it returns toward the mean, implying negative coefficient
 - If data are non-stationary (random walk), the value of \(y \) has no effect on \(\Delta y_t \), so coefficient will be zero
- In Stata, use “dfuller [variable name]”
Non-stationarity – Testing

- **Phillips-Perron test**
 - Also based on Dickey-Fuller but uses Newey-West standard errors to take into account higher-order auto-correlation
 - Advantage over ADF
 - Does not require information about order of autocorrelation
 - Does not assume conditional homoskedasticity
 - Will be more powerful than ADF based on wrong order
 - Disadvantage compared to ADF
 - Less powerful than ADF if ADF is based on correct order
- In Stata, use “pperron [variable name]”
Non-stationarity – Solution

• Many time-series variables are non-stationary, but the first difference is stationary:
 – Example: $Y_t = Y_{t-1} + \varepsilon_t$ so $\Delta Y_t = \varepsilon_t$ where $\varepsilon_t \sim N(0, \sigma^2)$
 – Y is integrated to degree one or $I(1)$

• Even if variables are non-stationary, a linear combination of them may be stationary
 • Example: Y_t and X_t are $I(1)$ but $\Delta Y_t - b \Delta X_t = \varepsilon_t$
 • Y and X are said to be co-integrated
 • Cointegration can be tested with Johansen procedure

• Cointegrated variables can be expressed as a error-correction model (described later)
Non-stationarity – Solution

Are variables stationary (ADF or PP unit root test)

- No
 - Are variables cointegrated? (EG or Johansen test)
 - Yes
 - Vector error correction model
 - No
 - No relationship
- Yes
 - VAR model in levels
Applying methods to price transmission

• How to interpret co-movement of prices
 – Frequently, co-movement of prices is taken as a sign of efficient markets
 – However, Harriss (1975) and Barrett and Li (2002) note that:
 • Co-movement possible with high transport cost and/or collusion among traders
 • Lack of co-movement may reflect no trade or trade reversal even if markets are efficient
Applying methods to price transmission

• Mundlak and Larson (1992)
 – International-local price transmission for 58 countries
 – Static regression model
 – Very high transmission, median elasticity 0.95

• Quiroz and Soto (1996)
 – Similar data but 78 countries
 – Error correction model
 – No long-run relationship (LRR) for 30 of 78 countries
 – No LRR for 7 of 16 African countries

• Conforti (2004)
 – ARDL and Error Correction Model for 16 countries
 – Ethiopia: LRR for 4 of 7 commodities
 – Ghana: no LRR for maize and sorghum
 – Senegal: LRR for rice but not maize
Data and methods

• Data on international commodity prices
 – Maize: US No 2 yellow maize FOB Gulf of Mexico
 – Rice: Super A1 Thai rice FOB Bangkok
 – Wheat: US No 1 hard red winter wheat FOB Gulf of Mexico

• Data on domestic commodity prices
 – Source: FEWS-NET and others
 – Monthly price data for nine sub-Saharan African countries
 – 62 price series (commodity-market combinations)
 – Average of 7 price series per country
 – 5-10 years of monthly data, usually including 2008

• Data on exchange rates from IMF
Data and methods

• Methods
 – Convert domestic prices to constant US$/ton
 – Test for integration (unit root) with ADL and Phillips-Perron
 – Test for co-integration with Johansen rank test
 – Error correction model

\[\Delta p_t^d = \alpha + \rho (p_{t-1}^d - \beta p_{t-1}^w) + \delta \Delta p_{t-1}^w + \theta \Delta p_{t-1}^d + \varepsilon_t \]
Results: East Africa

Transmission of world food prices to domestic markets in East Africa

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>ADF test</th>
<th>Perron-Phillips test</th>
<th>Johansen test</th>
<th>Speed of Adjustment</th>
<th>Short-run Adjustment</th>
<th>Long-run Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>Addis Ababa</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Addis Ababa</td>
<td>Sorghum</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Addis Ababa</td>
<td>Wheat</td>
<td>No</td>
<td>No</td>
<td>Stationary</td>
<td>Stationary</td>
<td>Stationary</td>
<td>Stationary</td>
</tr>
<tr>
<td>Kenya</td>
<td>Mombasa</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>Stationary</td>
<td>Yes</td>
<td>Yes</td>
<td>Stationary</td>
</tr>
<tr>
<td>Kenya</td>
<td>Nairobi</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uganda</td>
<td>Kampala</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uganda</td>
<td>Mbale</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>Stationary</td>
<td>Yes</td>
<td>Yes</td>
<td>Stationary</td>
</tr>
</tbody>
</table>
Results: Tanzania

Transmission of world food prices to domestic markets in Tanzania

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>ADF test</th>
<th>Phillips-Perron test</th>
<th>Johansen test</th>
<th>Speed of Adjustment</th>
<th>Short-run Adjustment</th>
<th>Long-run Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanzania</td>
<td>Arusha</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.54 *</td>
<td>-0.23</td>
<td>0.54</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Dar es Salaam</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mbeya</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Arusha</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Dar es Salaam</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mtwara</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Singida</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Songea</td>
<td>Maize</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Arusha</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.58 *</td>
<td>1.12 *</td>
<td>0.54</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Dar es Salaam</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.50 *</td>
<td>0.77</td>
<td>0.28</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mtwara</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.65 *</td>
<td>0.86</td>
<td>0.24</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Singida</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Songea</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.30 *</td>
<td>0.84</td>
<td>0.54</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Dar es Salaam</td>
<td>Sorghum</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mtwara</td>
<td>Sorghum</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0.65 *</td>
<td>0.86</td>
<td>0.24</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Singida</td>
<td>Sorghum</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: Malawi

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>ADF test</th>
<th>Phillips-Perron test</th>
<th>Johansen test</th>
<th>Speed of Adjustment</th>
<th>Short-run Adjustment</th>
<th>Long-run Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malawi</td>
<td>Chitipa</td>
<td>Maize</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>0.14 *</td>
<td>0.09</td>
<td>0.70</td>
</tr>
<tr>
<td>Malawi</td>
<td>Karonga</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Malawi</td>
<td>Lilongwe</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Malawi</td>
<td>Lunzu</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Malawi</td>
<td>Mitundu</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Malawi</td>
<td>Mzuzu</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Malawi</td>
<td>Nkhata Bay</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.20 *</td>
<td>0.44</td>
<td>0.07</td>
</tr>
<tr>
<td>Malawi</td>
<td>Rumphi</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: Mozambique

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>ADF test</th>
<th>Phillips-Perron test</th>
<th>Johansen test</th>
<th>Error correction model (if long-run relationship confirmed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
<td>Beira</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Chokwe</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Gorongosa</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Maputo</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Nampula</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Tete</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Chokwe</td>
<td>Rice</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0.37 *</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Gorongosa</td>
<td>Rice</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0.31 *</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Maputo</td>
<td>Rice</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>0.31 *</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Nampula</td>
<td>Rice</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0.31 *</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Tete</td>
<td>Rice</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0.30 *</td>
</tr>
</tbody>
</table>

*Denotes significant at the 5% level.
Transmission of world food prices to domestic markets in Zambia

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>Unit root in domestic price?</th>
<th>Long-run relationship?</th>
<th>Error correction model (if long-run relationship confirmed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambia</td>
<td>Chipata</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Choma</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Kabwe urban</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Kasama</td>
<td>Maize</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Kitwe</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Lusaka</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Mansa</td>
<td>Maize</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Mongu</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Zambia</td>
<td>Solwezi</td>
<td>Maize</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Results: Ghana

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Commodity</th>
<th>Unit root in domestic price?</th>
<th>Long-run relationship?</th>
<th>Error correction model (if long-run relationship confirmed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghana</td>
<td>Accra</td>
<td>Imported rice</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ghana</td>
<td>Kumasi</td>
<td>Imported rice</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ghana</td>
<td>Tamale</td>
<td>Imported rice</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ghana</td>
<td>Techiman</td>
<td>Imported rice</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ghana</td>
<td>Kumasi</td>
<td>Local rice</td>
<td>No</td>
<td>No</td>
<td>Yes 0.20 *</td>
</tr>
<tr>
<td>Ghana</td>
<td>Tarnale</td>
<td>Local rice</td>
<td>No</td>
<td>No</td>
<td>-0.13</td>
</tr>
<tr>
<td>Ghana</td>
<td>Techiman</td>
<td>Local rice</td>
<td>Yes</td>
<td>Yes</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Results: Summary

<table>
<thead>
<tr>
<th>Result of test of long-run relationship</th>
<th>Johansen test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>13</td>
</tr>
<tr>
<td>No</td>
<td>41</td>
</tr>
<tr>
<td>Stationary</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results of test of long-run relationship by country</th>
<th>Prices with relationship</th>
<th>Total nbr. of prices</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>1</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td>Ghana</td>
<td>1</td>
<td>7</td>
<td>14%</td>
</tr>
<tr>
<td>Kenya</td>
<td>0</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Malawi</td>
<td>3</td>
<td>8</td>
<td>38%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>4</td>
<td>11</td>
<td>36%</td>
</tr>
<tr>
<td>South Africa</td>
<td>0</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>4</td>
<td>16</td>
<td>25%</td>
</tr>
<tr>
<td>Uganda</td>
<td>0</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Zambia</td>
<td>0</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>62</td>
<td>21%</td>
</tr>
</tbody>
</table>
Results: Summary

<table>
<thead>
<tr>
<th>Crop</th>
<th>Prices with relationship</th>
<th>Total nbr. of prices</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>4</td>
<td>40</td>
<td>10%</td>
</tr>
<tr>
<td>Rice</td>
<td>8</td>
<td>17</td>
<td>47%</td>
</tr>
<tr>
<td>Sorghum</td>
<td>1</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>Wheat</td>
<td>0</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>62</td>
<td>21%</td>
</tr>
</tbody>
</table>
Summary of results

• Reasons for lack of price transmission
 Maize
 – Most African countries are self-sufficient in maize
 – Domestic price falls between export parity and import parity
 – Even efficient markets will not show price transmission in this situation
 – Intervention in maize markets also reduces transmission
 • Kenya supports price, Tanzania bans exports, Malawi and Zambia have large state trading enterprises that intervene in maize markets

Rice
 – Almost all African countries rely on rice imports
 – Degree of price transmission is higher for rice
Summary of price transmission methods

• Price transmission occurs between markets, between stages of a market channel, and between commodities... but not always

• Correlation coefficient
 – Easy to calculate and interpret
 – But only captures contemporaneous effects between two prices

• Regression analysis
 – Gives estimate of price transmission
 – Can take into account lagged effects
 – But is misleading if prices are non-stationary (and they often are)
Summary of price transmission methods

• Non-stationarity
 – Means prices follow a “random walk”
 – Regression results will be misleading
 – Can be tested using ADF and Phillips-Perron

• If prices are non-stationary, need to test for cointegration with Johansen test

• If prices are non-stationary and cointegrated, can use error correction model to study short and long-run price transmission elasticities
References (1)

 http://www.fao.org/docrep/007/j2730e/j2730e00.htm#Contents

References (2)

