
1

DEBUGATOR
How to debug a Computable General

Equilibrium Model using GAMS

February 2012

Hélène Maisonnave 1
Bernard Decaluwé 2

Véronique Robichaud 3
André Lemelin 4

This work is a joint effort between IFPRI and PEP in the context of the AGRODEP project,

and the authors acknowledge the financial support
of the AGRODEP project.

1 CIRPÉE et PEP, Université Laval, Québec

2 Département d’économique, Université Laval, Québec

3 CIRPÉE et PEP, Université Laval, Québec

4 Centre INRS-UCS, Université du Québec, Montréal

2

DEBUGATOR

How to debug a Computable General Equilibrium Model using GAMS

This document provides some hints to debug a Computable General Equilibrium (CGE) model

written in GAMS5. The aim of this document is to provide a methodology to help the readers

debug their own errors. The document tries to be systematic and pedagogical. The model used

for all the applications is PEP1-1 by Decaluwé et al (2010), available online at http://www.pep-

net.org/programs/mpia/pep-standard-cge-models/pep-1-1-single-country-static-version/

Some errors have been introduced in the model. They are a sample of some the types of

mistakes that may be encountered while running the GAMS code, such as compilation errors,

execution, calibration and specification errors. This document is not an exhaustive list of all the

different problems that may be encountered. The intention is to guide the reader on how to

debug his or her code using hypothetical examples.

Before reading this document, we strongly recommend that the reader start with the

description of PEP 1-16, as well as the User Guide of PEP 1-17.

There are 20 GAMS files that accompany this document, each corresponding to the 20 examples

that are presented here. This should make it easier for the reader to follow all the steps

developed in the processes.

This document is funded by AGRODEP and the PEP network. It was developed in a pedagogical

perspective to help the researchers of both networks. Needless to say, we welcome comments

that will help us improve and facilitate the use of this document. Readers are invited to send

their comments to Hélène Maisonnave at the following address: hmaisonnave@hotmail.fr

5 For a document that deals with using GAMS in general (not specifically applied to CGE), please refer to

McCarl(2009) or Rosenthal (2008)

6 See Decaluwé et al (2010)

7 See Robichaud et al (2011)

3

As previously mentioned, this document is intended to be pedagogical and systematic. The

different mistakes are presented in the order of their occurrence. Compilation errors are the

first type of errors the user will encounter. Following are some examples of execution errors

that may occur once all the compilation errors are corrected. Then, when the model has

successfully run (meaning neither compilation nor execution errors have occurred), we will

present some examples of calibration errors. Finally, once the model replicates the base year

successfully, we want to check if the model is correctly specified before running the simulations

we are interested in. We will present three different examples leading to erroneous results, due

to the model not being correctly specified.

1. Compilation errors

Following are 7 different compilation errors. For each example, only one error has been

introduced in the PEP 1-1 model.

Example 1:

A run of the file PEP-1-1_v1_1_Error1.gms yields the following process window:

Figure 1 : Process window of example 1

The status indicates that there are compilation errors, meaning that GAMS could not solve the

model due to writing errors.

4

Figure 2 : Process window of example 1 (2)

GAMS gives an explanation of the possible origin of the error in order to help the modeller to

debug the model. Here there are 3 errors written in red. The last one (Error 257) is not actually

an error, it only indicates that the model did not run because of previous errors.

The best way to debug the model is to double-click on the very first error in the process window,

as shown in the figure 3:

Figure 3 : Process window of example 1 (3)

We start with the very first error, as the subsequent errors may be cumulative8. In other words,

the first mistake may be repeated, or produce other errors, and then GAMS will compute it as

another mistake, although it is in fact the same mistake.

By double-clicking on the first error in the process window, it brings us directly into the GAMS

file. The cursor will actually show you where the error is, as shown in figure 4:

8 Notice that in this particular case, the second message describing error 8 is also very instructive. However, we

strongly recommend to start with the first error.

5

Figure 4 : GAMS file error 1

As previously mentioned, in the process window, GAMS provides some hints to the user for an

explanation of the error. Looking back at figure 1, the error message shown in the process

window for the very first error suggests that there are unmatched parenthesis types.

Looking carefully at equation 11 in figure 4 above, (where the cursor is), we notice that the type

of parenthesis is different, and also that there is a parenthesis missing.

As some equations may be very long and complex, in order to help the user check where the

open parenthesis matches up, GAMS has a facility: the user can put the cursor right after the

open bracket and then press F8 or the {a} touch, as shown in figure 5.

6

Figure 5 : Checking for parenthesis (F8 shortcut)

This will bring the user exactly where the bracket closes, as shown below:

Figure 6 : Checking for parenthesis (2)

Repeating this exercise for each parenthesis in equation 11, we discover that there is one

parenthesis that doesn’t match up:

7

Figure 7 : Brackets in example 1:

Thus, this bracket needs to be closed, and the correct place is just before the square bracket, as

shown in figure 8.

Figure 8 : Adding the missing bracket

Once the bracket is added, the user may re-run the model by pressing F9 or by clicking on the

red arrow that appears on the GAMS window.

8

Figure 9 : Running a GAMS code:

After pressing F9, a new process window appears where the status of the model is now “Normal

completion”, as the errors have been corrected. Note that the unmatched bracket was causing 3

errors. It is always very important to start with the very first error in the list, as this error may be

repeated or generate other errors.

After introducing a change, we want to be sure that there are less remaining errors than before

the change was introduced. If by introducing a change, you generate more errors than the

situation before, you might not have found the source of the problem.

In the new process window (see figure 10 below), the user wants to check that the status

indicates “normal completion”, and that the model is square (first red arrow), meaning that it

has the same number of equations as endogenous variables.

The second red arrow in the process window points to the infeasibility point. In the model we

are running, there is no shock, meaning we want to reproduce the benchmark values (derived

from the Social Accounting Matrix (SAM). Thus, GAMS is going to replace every variable and

parameter by its value provided at the calibration process. This “input point” in the process

window shows how far we are from the initial solution. GAMS provides an indication of the

largest difference that exists in the whole system of equations between the initial data and the

values computed by the model. If the model is calibrated correctly, the input point should be

very small (as it is in figure 10).

9

Figure 10 : Process window of example 1

10

Example 2:

The second process window is as follows:

Figure 11 : Process window of example 2

As indicated previously, we do not need to pay attention to Error 257 since GAMS simply

indicates that the model could not run properly due to previous errors.

Below Error 409, there is a short description that provides information on the source of the

problem: GAMS is looking for a semi column or a key word.

Double-clicking on Error 409 in the process window brings the cursor directly in the GAMS code,

just after EQ23, as shown in the figure below.

11

Figure 12 : Location of the error in example 2

By looking at the location of the cursor in figure 12, it appears that there is no need to introduce

neither a semicolon, nor a key word right after EQ23.

In this case, it can be particularly useful to go and check the previous line, meaning the end of

EQ22 just above EQ23.

When looking at EQ22, we can see that there is a semicolon missing at the end of the equation

(just after YGTR). Therefore, we need to add a semicolon right after YGTR.

We then re-run the model by pressing F9 or the red arrow in the GAMS window.

Figure 13 : Correction of example 2

Finally, in the process window, we check that the status is “normal completion”, and that the

input-point is very small.

12

Figure 14 : Process window of example 2

13

Example 3:

Example 3 is presented as follows:

Figure 15 : Process window for example 3

Example 3 consists of one error, Error 170. Error 257 only indicates that GAMS could not solve

the model because of previous errors. Below Error 170, there is a small definition that indicates

that an element has been used that does not belong to a defined domain.

To locate the error in the GAMS file, we double-click on Error 170 in the process window, and

this will bring us directly in the GAMS code where the error is located.

Figure 16 : Error 3 in the GAMS file

In the GAMS code, the cursor is located at the assignment of a value for sigma_y for the

agricultural sector. From the definition of Error 170 in the process window, we know that an

element (in this case, agri) does not belong to a defined domain.

14

Therefore, we have to check if the element agri belongs to one of the domains defined. To be

more specific, as the parameter sigma_y represents the income elasticity of a given commodity

for households, it refers to the set i (commodity set defined in PEP 1-1).

Therefore, we have to check if the element agri belongs to the set i, where the sets are defined

in the GAMS code. In the case of PEP 1-1, all the sets are defined at the very beginning of the

GAMS file.

Figure 17 : Set declaration:

From Figure 17, we can see that the set i refers to the commodities set and includes five

elements: agr, food, othind, ser, adm.

Thus, agr belongs to i but agri doesn’t. In this case, GAMS doesn’t recognize agri as an element

of i, and therefore indicates that this element does not belong to the domain.

To correct the error, we simply need to write agr instead of agri as shown below.

15

Figure 18 : Correction of example 3:

We then make sure that the model runs correctly by pressing F9. We obtain the following

process window where we can check that the status is “normal completion”, and that the input

point is small.

Figure 19 : Process window of example 3

16

Example 4:

Example 4 is as follows:

Figure 20 : Process window of example 4

The example 4 consists of one error, Error 120, as Error 257 only indicates that GAMS couldn’t

solve the model.

To locate the error in the GAMS file, we double-click on Error 120 in the process window. The

cursor is as follows:

Figure 21 : Error in example 4

In the process window, the definition under Error 120 indicates that an unknown identifier has

been entered as set. The cursor in the error window indicates that the set entered for

sigma_M(n) is unknown.

17

For this type of error, we have to go and check which sets were defined in the GAMS file. In the

case of PEP 1-1, the declaration of the sets is done at the very beginning of the GAMS file.

Figure 22 : Set declaration in PEP 1-1

Figure 22 indicates some of the sets that are defined in PEP1-1. The cursor indicates an error for

the parameter sigma_M, which refers to the elasticity for the composite commodity. Thus,

sigma_M should refer to the imported goods.

By checking the different sets and subsets, it appears that the appropriate set for imported

goods is m and not n.

To correct the error, we simply replace the n by an m in the definition of sigma_M, where the

mistake was identified.

Figure 23 : Correction of error 4

Once the corrected value is introduced, we can run the model again by pressing F9, or the red

arrow.

18

This allows the user to check that the model has run successfully.

Figure 24 : Process window after correction of example 4

19

Example 5:

Example 5 is presented in the figure below:

Figure 25 : Example 5

The example 5 consists in one error, Error 116. By double-clicking on the first red line, it brings

us to the following figure in the GAMS code:

Figure 26 : Location of the error in the GAMS file (example 5)

As shown in the figure above, the cursor brings us right after the element “gov”.

The definition of Error 116 in the process window indicates that a label is unknown; namely the

label gov is unknown.

At this specific place in the GAMS code (figure 26), we assign a value to the variable CGO(i). We

actually ask GAMS to find in the parameter SAM (created above) the corresponding value for

CGO(i).

20

By using the gdx facility9 to call the data, we know that the dimension of the rows and columns

is 2, meaning that the first two labels in each row and column won’t be data but labels.

Therefore, the name we give when assigning a value to a variable in the GAMS code must be the

same as the one in the excel file. The figure below represents the first part of the SAM used for

PEP-1-1, in the SAM_V1_1.xls file.

Figure 27 : Social Accounting Matrix used in PEP-1-1

The figure clearly shows that the first two labels of rows and columns represent labels, and not

data.

CGO(i) is public consumption of commodity i. In the SAM, (encircled in red in the figure above),

we can see that the corresponding labels would be (“I”,I,”AG”,”GVT”).

However, this is not what is written in the GAMS code. Indeed, in figure 26, we can see that we

assigned CGO(i) as (“I”,I,”AG”,”GOV”), and GOV has not been defined anywhere in the SAM.

Thus, it is very simple to correct the error in the GAMS code simply by changing the label GOV

for GVT10.

9 Please refer to Mc Carl et al (2008) for an exhaustive explanation of the gdx facility, and to Robichaud et al (2011)

section 4.3 to have a complete explanation of the gdx facility used in PEP 1-1

10 Note that one could have changed the label in the SAM. As in the rest of the GAMS code, we always refer to gvt,

we decided to change gov for gvt in this particular case.

21

Figure 28 : Correction of example 5

After substituting GOV for GVT in the figure above, we can run the model by pressing F9 and

check that the completion is normal.

Figure 29 : Checking example 5 solution

22

Example 6:

Figure 30 presents Error 6:

Figure 30 : Process window of example 6

Example 6 contains Error 141. By double-clicking on the red line Error 141 in the process

window, it brings us to the following part in the GAMS code:

Figure 31 : Location of error 6 in the GAMS code

Underlined in red in the figure above, the cursor brings us to the variable PLO.

In the process window (figure 30), right under the red line mentioning Error 141, GAMS gives a

short definition of the error. It indicates that the symbol (in this case PLO) has been neither

initialized nor assigned.

Therefore, we have to check that a value has been assigned to PLO(i) before this specific line in

the GAMS code. Specifically, during the calibration step, the order of the variables/parameters

matters. If a variable/parameter is used, it must have been defined previously in the GAMS

code.

Effectively, we have to check in the GAMS code if a value has been assigned to PLO(i).

23

We know that in the calibration, a value must be assigned to each parameter and variable.

There are three different approaches to assigning these values:

- First approach: Reading the value of a variable from the SAM: in the previous example, we

were assigning a value to CGO(i) directly from the SAM.

Figure 32 : Assignment of a value to a variable using the SAM

-Second approach: Directly assigning a value to a variable in the GAMS code. Some variables

cannot be read directly from the SAM (ex: all prices, elasticity…). In that case, we have to

directly assign a value to those variables.

Figure 33 : Assignment of a value to a variable by giving it a value directly

-Third approach: Computing the variable. This means that the value of the variable depends

on the value of the other variables.

Figure 34 : Assignment of a value to a variable by calibrating it

We point out again that in the calibration process, the order of computation of different

variables/parameters is very important. For example, in figure 34 above, to compute tmrg(i,ij),

the variable PCO(i) has to be defined before.

24

In the case of example 6, we have to check if a value has been assigned to PLO(i) before it

appears on the right hand side of an equation.

To find PLO from the beginning of the GAMS code, we write PLO in the search window and

then hit the flashlight next to the search window.

Figure 35 : Looking for PLO (i) in the GAMS code

We discover that PLO (i) has not been assigned a value at all. We then have to assign a value

that is consistent with the price system of PEP 1-1.

Figure 36 : Correction of example 6

Afterwards, we re-run the model by pressing F9 and check that the model runs successfully,

without any errors.

25

Figure 37 : Verify example 6 solution

26

2. Execution errors:

In the following examples, the compilation errors have all been resolved. However, GAMS

indicates that it cannot solve the model because it has encountered an execution problem.

This can happen when the model is not square (i.e. the number of endogenous variables is

different from the number of independent equations), or when GAMS has to divide by zero (i.e.

a variable was assigned 0 as a value, and at some point in the GAMS code, it has to divide by this

value, …)

For these types of errors, GAMS indicates that it could not solve the system of equations

due to computational problems.

Example 7:

Example 7 is presented as follows:

Figure 38 : Process window of example 7

In this example, the solution aborted due to a division by zero. In the process window,

GAMS indicates the specific line where the division by zero would happen.

As in the previous examples, we double-click on the blue line of the error (indicated by the

red arrow). This brings us to the output file (also called listing file). This file reproduces the

entire GAMS code, numbering each line of the GAMS file. Subsequently, we can easily go to line

439, as indicated in the process window.

27

Figure 39 : Listing file of example 7

As we can see from figure 39, on line 439, GAMS indicates that the term in the denominator

is equal to zero. In other words, KDO(k,j) may be equal to zero, at least for one of its values.

To determine the source of the problem, the first assumption here is that we have initialized

KDO(k,j) to zero. If we had forgotten to assign a value to KDO(k,j), it would have created a

compilation error, as in the case of example 6, where we had forgotten to assign a value to

PLO(i).

The next step is to check where in the GAMS code we assigned a value to KDO(k,j).

KDO(k,j) is a variable we can read from the SAM.

Figure 40 : Assigning the value of KDO(k,j) in example 7

From figure 40, we can see that we have assigned a value to KDO(k,j). However, the way we

assigned a value to KDO(k,j) must be incorrect, since the corresponding value is zero11.

Let’s have a look at the SAM and the different labels we use to read the value of KDO(k,j).

Figure 41 shows the reproduction of the first half of the SAM used for PEP-1-1. The values of

KDO(k,j) are encircled in red in the figure below.

11 Note that if the value is actually zero for a sector, then we need to introduce a condition in the computation of

lambda_RK(ag,k). It would then be: lambda_RK(ag,k)$KDO(k,j)= lambda_RK(ag,k)/SUM [j,KDO(k,j)];

28

Figure 41 : First half of the SAM used for PEP 1-1

Looking at the SAM from figure 41, to assign a value to KDO(k,j), KDO(k,j) should be assigned

as (“K”, k,”J”,j).

We can see that this is not the way it was assigned in the GAMS code (see figure 40). We

then need to change the way KDO(k,j) was assigned by substituting “K” for “L” for the first

dimension.

Figure 42 : Example 7 corrected

We can then re-run the model to verify that the error has been corrected.

29

Figure 43 : Process window of example 7 after correction

30

Example 8:

Example 8 is another example of an execution error. As indicated by the red arrow, the

model is not squared.

Figure 44 : Process window of example 8

In this example, we have 349 rows, meaning equations, and 350 columns, referring to

endogenous variables, indicating that we need to fix a variable or add an equation.

This type of error is not directly linked to the writing in GAMS. In this case, the modeller has

to go back to his or her pen and paper, and check his list of variables and equations. Since there

is only a difference of one variable or equation, the first hint would be to go and check the

closure in the GAMS code, to make sure we have not forgotten an exogenous variable in the list.

In PEP-1-1, the closure of the module is at the very end of the GAMS file.

31

Figure 45 : Closure rules in GAMS in example 8

Of course, choices of exogenous variables depend on the modeller’s choices and are linked

to the economic problem he or she wants to analyse. Consequently, the closure must be

consistent with the economics and the way equations are written. Thus, for this specific type of

error, the modeller wants to go back to his list of equations and variables that correspond with

the economic closure he has chosen. The modeller then needs to check if the list of exogenous

variables is complete.

In the case of PEP1-1, the nominal exchange rate is the “numéraire” of the model. Labour

supplies are exogenous. When we apply the assumption of a small country, world prices are

given, meaning that they are exogenous. Changes in inventories and minimal consumptions for

households are also fixed. Finally, government’s spending and the current account balance are

both exogenous. For capital supply, it depends on the choice of the modeller.

From this list of exogenous variables, if we compare with the list of exogenous variables in

the GAMS code, we can see that the current account balance (CAB) is missing.

We then need to add the current account balance as an exogenous variable, as it is

consistent with the underlying assumptions in the model.

32

Figure 46 : Correction of example 8

Once we have added this exogenous variable, we can press F9 and check if the model runs

properly.

Figure 47 : Process window of example 8 after correction

33

Example 9:

Example 9 is presented as follows:

Figure 48 : Process window of example 9

As shown in figure 48, the solving aborted due to execution errors. At different lines, GAMS

has to divide by zero

We double-click on Error at line 499. This leads us to the listing file, where we can go to line

499.

34

Figure 49 : Listing file for example 9 (1)

From figure 48, we know that the division by zero happens several times (i.e. at different

lines).Our first assumption would be that there is only one variable or parameter that takes zero

as a value, and we could have repeated errors.

However, from figure 49, we can check for both lines 499 and 519 (red arrows in figure 49).

Each line refers to a different denominator, meaning a different variable. Indeed, at line 499, it

seems that XSTO(j) is equal to zero for at least one of the sectors, whereas at line 519, it is

CIO(j).

Figures 50 to 52 reproduce the different lines where the denominator is equal to zero, for at

least one element.

Figure 50 : Listing file for example 9 (2)

From figure 50, it is VAO(j) that takes zero for value at least for one of the sector.

35

Figure 51 : Listing file for example 9 (3)

Figure 52 : Listing file for example 9 (4)

Here, the only clue we have is that the division by zero affects sectors, and not commodities.

Moreover, VAO(j), CIO(j) and XSTO(j) are linked together through the value added-input output

coefficient. One way to proceed is to ask GAMS to display the value of the variable XSTO(j). For

example, just before line 499, and right after the computation of XSTO(j), we ask GAMS to stop

the compilation immediately after the display command12.

Figure 53 : Display of XSTO(j) in example 9

12 Note that we could have asked GAMS to display the values of the three variables mentioned above. As XSTO(j) is

the first one where the problem appears, we chose to have a look only at this variable.

36

Just before computing PTO(j), we ask GAMS to compute XSTO, using the command DISPLAY,

and then we ask it to stop the solve right after the display, using the $exit.

Including $exit is not compulsory, but we find it useful as it will only solve the part of the

model we are interested in. In other words, GAMS won’t pay attention to the subsequent part

of the GAMS code, and thus we should not have any errors up to this point.

Running the model with these new commands, we obtain the following listing window:

Figure 54 : Listing window of example 9

Here we are interested in the display that appears in the listing file (red arrow).

By clicking on the “+” next to Display, XSTO appears, and when we double-click on it, it

brings us in the listing file where GAMS computes the parameter XSTO.

Figure 55 : Display of XSTO in the listing file (example 9)

From figure 55, we find out that XSTO is computed for the four sectors (agr,ind,ser adm),

and none of the values are equal to zero.

37

From this point, there are two ways to continue: either we check the sectors in the set

declaration at the beginning of the GAMS file, or we can ask GAMS to display the different

sectors. In this case, we will ask GAMS to display the different sectors.

In the GAMS file, next to display XSTO, we add j, which refers to the set of activities.

Figure 56 : Display of XSTO(j) and j in example 9

After running the model, we have a look at the values displayed for j in the listing file:

Figure 57 : Display of XSTO and j in the listing file (example 9)

From figure 57, we find out that j refers to all sectors: agr,ind,ser,adm,administration. We

can immediately recognize the problem because we defined four different sectors, and GAMS

displays five sectors, adding “administration” as an activity. We have to find out why GAMS

considers “administration” as an activity.

For this, we need to go to where the sets are defined. In PEP 1-1, they are defined at the

very beginning of the GAMS code.

38

Figure 58 : Set definition in example 9

From figure 58, we can see that the definition of adm sector is written as public,

administration, with a comma in between. For GAMS, the fact that a comma has been

introduced in the definition of the element adm is the same as if a new sector were declared.

This means that according to GAMS, j refers to five elements and not only to four elements.

Since we only assign a value for the four sectors (agr,ind,ser,adm), by default, GAMS would

assign the value zero for the fifth sector, administration. Note that GAMS does not report in the

listing file the sectors which values are equal to zero.

To correct the error, we simply need to remove the comma in the definition of the adm

sector.

Figure 59 : Correction of example 9

Before re-running the model, we need to remove the $exit we inserted in the GAMS file.

Then, we can re-run the model and check that it runs successfully.

39

Figure 60 : Process window after correction of example 9

40

Example 10:

The process window of example 10 is given as follows:

Figure 61 : Process window of example 10

From figure 61, it appears that the solving aborted because the model is not square. We

have 350 rows (i.e. equations) and 349 columns (i.e. endogenous variables). This scenario is the

opposite of example 7, where we now have too many equations or not enough endogenous

variables.

As in example 8, the modeller needs to go back to his pen and paper and check his variables

and equations.

The first step in this case would be to go and check in the closure, to see if one variable was

fixed when it shouldn’t be. If this is the case, we will then have to release the variable.

41

Figure 62 : Closure rules in GAMS in example 10

We explained the closure rules followed in PEP 1-1 above (see example 8), and we can see

that all the variables that are supposed to be exogenous are indeed fixed.

Therefore, we need to look somewhere else. From figure 61, we know that there is only one

extra equation. If there were several extra equations, it could mean that there is an equation

defined on a set that should be removed. Here, there is a single extra equation: this could come

from a set/subset use.

The modeller needs to go through his or her list of equations and variables, and check for

each variable, what the corresponding equation is, and more importantly, what is the related

set.

In our application, we go through the GAMS code of PEP 1-1, and check the definition of

each variable and equation. When reviewing the equations, we find something interesting

regarding the equilibrium equations, as shown in figure 63:

42

Figure 63 : Equilibrium equations in example 10

The two red arrows show the equilibrium on the commodities market. Equation 89

computes the equilibrium for each commodity, as it is defined over the set i. Equation Walras

computes the variable LEON, that refers to the equilibrium for the agricultural commodity, and

yet this equilibrium is already computed in equation 89. In other words, the equation that

determines the equilibrium for the agricultural commodity is computed twice.

Now, we must determine which of the equations needs to be removed. Equation Walras

computes the variable LEON, which represents the equilibrium on the agricultural market. If we

were to remove equation WALRAS, the variable LEON would be undefined. If we have a close

look at the meaning of equation 89, we find out that this equation represents the equilibrium

conditions on the commodities markets. According to Walras’ Law, if (n-1) markets are in

equilibrium, then the last one is also in equilibrium. Thus, this equation should not be computed

over all the commodities, but overall commodities minus one.

At the beginning of the PEP1-1 GAMS code, the sets are defined, and there is a set that

refers to all the commodities except agriculture:

43

Figure 64 : Set definition in PEP 1-1 :

Equation 89 should be defined over this subset in accordance with Walras’ law. We then

need to change the set in the declaration of the equations:

Figure 65 : Declaration of equation 89 in example 10

Becomes:

Figure 66 : Declaration of equation 89 after correction in example 10

Now we also need to change the set in the definition of equation 89:

44

Figure 67 : Equation 89 in example 10

By:

Figure 68 : Equation 89 after correction in example 10

Then, we can run the model again and check the solution:

45

Figure 69 : Process window after correction of example 10

46

3. Calibration errors

The third type of errors occurs when the model does not reproduce the base year values. We

know that without a shock, GAMS replaces the parameters and variables by their computed

values, and this should lead to reproduce the initial SAM. In the examples below, you will find

some examples where the base year is not reproduced, and you will see that there are many

ways to make calibration errors..

This type of error happens once the compilation errors (red lines in the process window) and

execution errors have been corrected. In other words, though the model is running, we have to

pay attention to the input point in order to check if the model replicates the base year.

We chose to initialize the variables at the benchmark values. This helps the model to solve but it

is as well a diagnostic tool.

47

Example 11:

Example 11 is presented as follows:

Figure 70 : Process window of example 11

From the process window above, we first want to check the input point, which indicates the

magnitude of the biggest difference between the left and the right side of each equation. If the

model was perfectly calibrated, the difference should be zero for each equation. If this is not the

case, and we have not introduced any shock, then there is definitely a calibration error. In this

example we can see that the infeasibility is quite big.

The next step is to find from which equation the problem comes from. To do this, we refer to

the listing file, and write four asterisks or the word INFES13 in the search window as shown in

the next figure:

13 INFES is the abbreviation of infeasible. Looking for an INFES in the listing file is a way to solve the calibration

errors

48

Figure 71 : Listing file of example 11

The four asterisks indicate all the important components of the output file. By clicking on the

flashlight located just to the left of the search window, you will find the “****” in the listing file.

49

Figure 72 : Listing file of example 11 (2)

We click on the flashlight and obtain figure 73:

Figure 73 : Looking for an Infes in the listing file

50

In the listing file shown in figure 73, we find an infes for equation 1, in each sector. We then

check to see if there are any other infes by clicking on the flashlight again. We obtain the

following figure:

Figure 74 : Looking for infes in example 11

The infes that affects equation 4 is actually very small. If we look at the magnitude, we find that

it is a number to the power of -12, or -11. In this case, we will not take into account the infes for

which the magnitude is that low. Note that the balance of your SAM may influence your

rounding here. We continue on in the listing file, looking for another infes. We will not report

anymore infes that are greater than E-8.

Finally, we cannot find any significant infes and we obtain the following figure:

51

Figure 75 : Listing file of example 11

So for this example, we have just one infes that only affects equation 1, for all the reported

sectors. As there is only one equation affected, we would proceed as follows:

- check how the equation is written in the GAMS code

- check how the parameters that were entered in this equation are calibrated.

- check the initial data of the variables appearing in the equation

Let’s go and see how equation 1 is written in the GAMS code.

Figure 76 : Equation 1 in example 11

52

Equation 1 defines the value added of activity j. It is a share of the total production of the sector

j, as assumed in the PEP1-1 model. However, in the GAMS code (figure 76) we can see that the

parameter v(j) is divided by XST(j), while in fact, it should be multiplied by XST(j).

Thus, to correct the calibration error, we need to correct Equation 1 by changing “/”to “*”, as

shown in the following figure.

Figure 77 : Correction of example 11

Now, we can re-run the model and check if it reproduces the base year.

Figure 78 : Process window of example 11

53

Example 12:

Example 12 is presented in the following figure:

Figure 79 : Process window of example 12

As underlined in the figure above, the input point is too high. The debugging procedure is the

same as in the previous example. We go to the listing file, and by double-clicking on the

flashlight, find the infes.

Figure 80 : Infes in example 11

54

We find that there is only one infes in this file14.

We proceed by applying the same methods used in the previous example: we first check if the

equation is correctly specified. If it is correctly specified, we check how the parameter used in

the equation is calibrated.

Figure 81 : Writing of equation 55 in example 12

From figure 81, we check that equation 55 is correctly specified. GFCF expenditure is distributed

among commodities in fixed shares (gamma_INV(i)).

As the equation is correctly specified, we continue by checking on the parameter gamma_INV(i).

The calibration of gamma_INV(i) is at the beginning of the GAMS code of PEP 1-1. Figure 82

reproduces the calibration for this parameter.

Figure 82 : Calibration of the parameter gamma_INV(i) in example 12

The parameter Gamma_INV(i) is the share of commodity i in total investment expenditure.

However, based on the equation in figure 82, the computation of gamma_inv(i) is incorrect. For

shares, the parameter should be written as follows:

14 We remind the reader that infes smaller than E–8 are not relevant infes. To avoid inflating the size of this document,

we will henceforth report only the relevant infes.

55

Figure 83 : Correction of the calibration of parameter gamma_INV(i) :

Once we correct the symbol, we run the model again and check the input point.

Figure 84 : Process window of example 12 after correction

56

Example 13:

The process window of Example 13 is reproduced below:

Figure 85 : Process window of example 13

The input point for this example is quite high. We have to go into the listing file and look for

infes, by searching for four asterisks as in Figure 72. We find the following:

57

Figure 86 : Listing file for example 13

We find two infes in the listing file, at equations 45 and 46.

Firstly, we note that both equations are related to the agent “rest -of -the –world”. The second

hint is that the value of the infes is exactly the same for both equations, and it is an exact value,

so we can assume it comes from the SAM.

In this case we can proceed by checking how these two equations are written; notably, if there

is a variable common to both of them. If there is, we will then have to look at the initialization of

the variable, before going through the GAMS code for further investigations.

Let’s have a look first at equations 45 and 46:

Figure 87 : Equations 45 and 46 in example 13

From the figure above, we can see that both equations are correctly specified. We notice as well

that the income of the Rest of the World (YROW) is common to both.

58

We now go and see how this variable has been initialized. In PEP 1-1, variables are initialized at

the end of the GAMS file, just before the closure rules.

Figure 88 : Variable initialization in example 13

59

60

The figure above reproduces the initialization in the GAMS code for example 13. We cannot find

YROW in the list. In other words, YROW has not been initialized to its benchmark value, and by

default, GAMS has initialized it to zero.

Thus, to correct the error, we need to initialize YROW.

61

Figure 89 : Initialization of YROW in example 13

We can now run the model again to verify that the error has been corrected.

Figure 90 : Process window of example 13 after correction

62

Example 14:

Figure 91 : Process window of example 14

As the input point is quite high, we proceed to look for infes in the listing file.

Figure 92 : Listing file in example 14

63

We find two infes in the listing file, at equations 46 and 55. We cannot have a clear idea of what

is wrong at this point. However, notice that infes in equation 46 is an exact value. This leads us

to believe that it might be a value problem, or possibly an initialization problem as in the

previous example.

We begin by checking the equations in the GAMS code.

Figure 93 : Equations in example 14

Both equations are correctly specified. Our first intuition is to focus on equation 46, and check

the value for SROW. We first check to see if the value was initialized. If it wasn’t (as in the

previous example), we can correct it. If the value was in fact initialized, we must verify the value

assigned to it.

64

Figure 94 : Initialization in example 14

From figure 94, we can see that SROW was initialized at its benchmark value. Now we verify the

value assigned to it.

65

Figure 95 : Assignment of variables in example 14

We find SROWO directly from the SAM.

66

Figure 96 : partial reproduction of the SAM:

From figure 96, we read the “rest of the world’s saving”, SROW, (encircled in red) at the

intersection of the line “OTH”,”INV” (underlined in red), and the column “AG”,”ROW”.

If we look at figure 95, we can see that it is not exactly how SROWO was assigned.

It is written:

SROWO= SAM(“OTH”,”INV”,”AG”,”GVT”) instead of SROWO= SAM(“OTH”,”INV”,”AG”,”ROW”).

In other words, we have assigned the value of “government’s savings” for the “rest of the

world’s savings”.

We then need to correct the error.

67

Figure 97 : Assignment of SROWO after correction in example 14

We can now run the model again and see if we have removed at least one infes.

68

Figure 98 : Process window after correction in example 14

From figure 98, we can see that we have an ideal input point, meaning that by correcting the

value of SROW, we also corrected the second infes. In effect, the incorrect value of SROW was

affecting equation 55, (via the computation of IT).

69

 Example 15:

Example 15 is described in the figure below:

Figure 99 : Process window in example 15

To find the infes, we go in the listing file and search for the four asterisks using the flashlight.

We find the following:

Figure 100 : Infes found in the listing file example 15

70

We find two infes, one at equation 22, dealing with government’s income, and the second at

equation 44, dealing with government’s savings.

Before we begin our investigation, we may notice that for both equations, we have an exact

value, and that it is the same value in both equations. This leads to the intuition that the infes

should come from a data assignment or initialization.

In both equations, we have the common variable YG. We should start with checking the

initialization of this variable. If the initialization is in fact correct, we will then check the

assignment of the variable.

Figure 101 : Initialization of YG in example 15

From figure 101 we find that YG is in fact initialized, but not to its correct value. Here YG is

initialized as SGO instead of YGO.

71

To correct the error, we simply need to initialize YG at its correct benchmark value, YGO.

Figure 102 : Correction of initial value for YG in example 15

Once again, we can run the model and check that the input point is very small, as shown in the

figure below:

Figure 103 : Process window of example 15 after correction

72

Example 16:
Example 16 is defined as follows:

Figure 104 : Process window of example 16

We go in the listing file to find out where the infes are:

Figure 105 : Listing file in example 16

73

We find three infes for this example.

What is interesting about these infes is that they only appear for the agricultural and food

commodities. Equation 55 computes the INV(i) variable, and this variable only exists for

agriculture and food. If you have a look in the SAM, you will see that there is no final demand for

investment purposes for services, administration or other food commodities.

Figure 106 : SAM of PEP 1-1

74

INV(i) will be the first variable we will check.

We will apply the same procedure as above to find the source of the infes.

First, we will check how the variable INV(i) is initialized:

Figure 107 : Initialization of INV(i) in example 16

From the figure above, we can see that INV(i) is correctly initialized. Let’s now go and check how

INV(i) is assigned in the calibration process.

75

Figure 108 : Assignment of INVO(i) in example 16

Figure 106 presents the SAM. The assignment of the variable INVO(i) is directly read from the

SAM. If we pay attention to the line INVO(i) (red arrow), we can see that the variable is correctly

assigned.

Thus, we need to investigate further for this example.

We go back into the GAMS file and we display the variables INV(i) and INVO(i). The two should

be equal.

Figure 109 : Display of INV(i) in example 16

76

In the listing file, we find the following results:

Figure 110 : Display of INV(i) and INVO(i) in example 16

The result is very interesting. The two values are different. INVO(i) is exactly equal to the value

in the SAM. However, the values we get from the SAM are actual monetary values, meaning that

the variables are expressed in a given currency.

This particular variable, INV(I,) is extracted from the SAM as a value. We then have to divide it

by its price in order to convert it to volume (we want to know how many cows were sold in

order to increase the capital stock of a sector the following year (this would be INV(“agr”)).

To compute the volume of INV(i), we have to divide the value we extract from the SAM by its

price. The price of INV(i) is the composite price PC(i).

We then add the following line in the code:

Figure 111 : Obtaining volumes from values in example 16

We can then re- run the model and check that it works:

77

Figure 112 : Process window of example 16 after correction

78

Example 17:

Example 17 is presented as follows:

Figure 113 : Process window for example 17

As in the previous examples, we go in the listing file to find the infes. As shown in the following

figure, we find that there is only one infes on equation 63.

Figure 114 : Infes in example 17

79

Because we are only concerned with one equation, we will first go and check how the equation

is specified, if it is written correctly, and how the parameters are calibrated.

Figure 115 : Equation 63 in the GAMS code in example 17

Equation 63 is the relative supply of export and local commodity derived from the CET function

expressed in equation 6115.

At this point, it’s important to check your calculations to ensure that the way equation 63 is

written is consistent with the way equation 61 and the beta_X(j,x) parameter are calibrated.

When checking on the calculations for the relative supply function, we have a look at figure 114,

and find that it is not exactly how we wrote it. Indeed, as the parameter beta_X(j,x) refers to the

share of exports, the way we specified the equation is not correct.

We then need to change the ratio between the share parameters in equation 63.

15 For the complete mathematics (derivation of the first-order conditions of revenue maximizing subject to the CET

aggregator function defined in equation 61), please refer to Decaluwé et al (2009), pages 87-88

80

Figure 116 : Correction of equation 63 in example 17

We then run the model and check that in the process window, the value for the input point is

very small.

Figure 117 : Process window after correction of example 17

Though this example looks like example 11 in the way that for both, equations were not

correctly specified, we found it relevant to introduce a second example implying the same kind

of mistake. Actually, in example 17, the mistake is less obvious than in example 11. The idea for

both examples, and especially the latter, is that the modeller needs to go back to his or her

calculations to check if he or she correctly specified the equations.

81

4. Specification errors

The last type of error is by far the most difficult for the modeller to solve. Unfortunately, there is

no set of rules to follow. However, we can offer some guidelines for solutions based on our

experience.

We began with how to fix computation errors (examples 1 to 6). Once these are fixed, if

possible, GAMS solves the model (examples 7 to 10). With no compilation errors and a square

model with no division by zero, GAMS tries to reproduce the base year, and eventually we

would have calibration errors (example 11 to 17).

We insisted on the value of the input point in the process window without a shock.

Once the model replicates the base year, we need to run a simulation. As explained in

Robichaud et al (2011), in section 5-3, when the modeller runs a shock, he or she wants to check

that the model is correctly specified by checking the value of the control variable (in PEP 1-1, its

name is LEON). This value must be very small.

For this type of error, the modeller needs to go back to his pen and paper.

- First ask yourself if the simulation you are running makes sense given the

hypotheses you have chosen. For example, let’s say that you assume a Leontief type

of function between labour and capital in the production function. Capital is sector

specific. You want to simulate a flood of foreign workers in the economy by

simulating an increase of labour supply in your model. Given the hypothesis you

chose (a very restrictive function between labour and capital and sector specific

capital), the model cannot adjust. Thus, the value of the variable LEON will be

inflated. In this case, you need to think more about the hypotheses you chose given

the simulations that you want to run.

- A second explanation could be the magnitude of the shock that is introduced in the

simulation. If the magnitude is too big, then the model won’t be able to adjust.

There again, the value of LEON will be too big.

- SAM related problems: you may have problems if you have very extreme values in

one specific sector of the SAM. For instance, if 98 % of a commodity available in the

economy comes from imports, and a tariff removal shock is applied, this might

create a problem since it will be very difficult to replace imports by domestic sales.

82

The list above is not exhaustive, of course. Let’s assume for the remaining examples that we

have already ruled out the above explanations, and we still do not know why the value of LEON

is so significant.

In the three following cases, we will provide some hints for the modeller to find solutions, but as

previously mentioned, solving this type of error can be extremely difficult and time consuming.

Example 18:

For this example, we have introduced an increase of labour supply by 20% as shown in figure

118.

Figure 118 : Increase of labour supply by 20% in example 18

The process window now shows a large input point. This is normal as a simulation was

introduced16. The modeller wants to check in the process window that the model is feasible to a

square system, and that there is a normal completion.

16 As we explained previously, GAMS replaces the values of each parameter and variables by its benchmark values, as

it is the way we initialized the variables. When we introduce a shock, we force a value to be different from its

benchmark. In effect, this will create a difference between the left hand side and the right hand side for at least one

equation. Thus the input point will report the magnitude of the difference.

83

Figure 119 : Process window in example 18

Now we want to go and check the value of LEON at the end of the listing file.

Figure 120 : Check on variable LEON after simulation in example 18

From figure 120, we can see that the value of LEON is significant.

Given that the first three hypotheses have already been checked, we need to study the

equations very carefully.

84

The first equations the modeller should have a look at, are the ones that contain a price equal to

1 at the benchmark. Some prices are initialized to one, but if a shock is introduced, then their

value is going to change. If the equation is not specified correctly, this is where the problem will

appear.

Example 18 will illustrate our statements. We review each equation of example 18.

Figure 121 : Reviewing equations in example 18

If we focus on equation 11, we can see that there is indeed a problem. YHL(h) represents

households labour income: each household receives a share of the earnings of each type of

labour. As it is written in example 18 (and figure 121), there is a price missing on the right hand

side of the equation, namely the wage rate.

As the benchmark value is equal to 1 for W(l), this omission was not harmful for replicating the

benchmark values. When introducing a shock, prices change and thus equality is not respected

anymore.

We then need to correct the writing of the equation by introducing the wage rate

85

Figure 122 : Correction of example 18

After this change, we want to run the model again and check the value of LEON.

Figure 123 : Check on variable LEON after correction in example 18

Here, the value of LEON after the shock is very small. Now the modeller can start analyzing the

results of the simulation.

86

Example 19:

The following figure presents the value of LEON after a 20% increase in labour supply (as in the

previous example).

Figure 124 : Checking on LEON after a simulation in example 19

The value of LEON is significant. We now need to review the different equations, especially the

ones involving prices equal to one at benchmark.

87

Figure 125 : Price equations in example 19

If we take a closer look at equation 78, we can see that something is not correct in the

formulation of the equation. This equation determines the basic price P(j,x) obtained by industry

j for exportable commodity x, as a weighted sum of its basic price on the export market and its

basic price on the domestic market.

We can tell that equation 78 is written incorrectly because if we look at the right hand side of

the equation, we can see that there are missing brackets. In this case, P(j,x) is only dividing the

second term of the sum (as GAMS respects the mathematical operator priority).

Thus, either we add brackets or we write P(j,x) on the left side of equation 78.

88

Figure 126 : Correction of equation 78 in example 19

Then we can run example 19 again and check the value of LEON

Figure 127 : Checking of LEON after correction of example 19

In conclusion, a missing pair of brackets, or brackets that close or open at the wrong place, can

lead to an incorrect specification of the model.

89

Example 20:

Figure 128 reproduces the value of LEON, after an introduction of a 20% increase of labour

supply.

Figure 128 : Value of LEON in the listing file in example 20

As for the two previous examples, we will start reviewing the equations, focusing on the ones

including prices whose values are equal to one at the benchmark.

This time, we do not find any mistakes with this particular type of equation. Consequently, we

need to review all the equations.

90

Figure 129 : Equations in example 20

When reviewing all of the equations, we find a problem with equation 25. This equation defines

total direct taxes paid by firms. The problem here is that the left hand side of the equation,

TDFTO, refers to the value of the variable at its benchmark value, but TDFTO will not change

when a shock is introduced. Here, it should be the variable TDFT instead of the parameter

TDFTO.

Figure 130 : Correction of equation 25 in example 20

We can then check the value of LEON after the simulation:

91

Figure 131 : Check on variable LEON after correction in example 20

All in all, this last type of error can take a long time to find, especially if the model has several

equations. As previously mentioned, the examples we presented here are not in any way a

comprehensive list of all possible scenarios resulting from this type of error.

To avoid this type of error, we strongly recommend that the modeller starts from a model that

works (i.e. with a very small control variable when running a simulation), and make one change

at a time. After each addition, run a simulation and look for the value of the control variable.

This way if the value of this variable is not correct, the modeller will know that it comes from his

new addition.

92

References:

Decaluwé, B., A. Lemelin, H.Maisonnave and V.Robichaud (2010) The pep standard computable general
equilibrium model single‐country, static version pep‐1‐1, second revised edition october 2009 (minor
corrections, july 2010) http://www.pep-net.org/programs/mpia/pep-standard-cge-models/pep-1-1-single-
country-static-version/

McCarl, B.A. A.Meeraus, P.van der Eijk, M. Bussieck, S. Dirkse and P. Steacy (2009) McCarl Expanded GAMS
User Guide, Version 23.3, GAMS Development Corporation, Washington DC, USA

Robichaud, V., A. Lemelin, H.Maisonnave and B.Decaluwé (2011), PEP1-1, a user guide, AGRODEP and
Poverty and Economic Policy Research network

Rosenthal, R.E (2008), GAMS, A User’s Guide, GAMS Development Corporation, Washington DC, USA

http://www.pep-net.org/programs/mpia/pep-standard-cge-models/pep-1-1-single-country-static-version/
http://www.pep-net.org/programs/mpia/pep-standard-cge-models/pep-1-1-single-country-static-version/

93

Table of figures:

Figure 1 : Process window of example 1 ... 3

Figure 2 : Process window of example 1 (2) .. 4

Figure 3 : Process window of example 1 (3) .. 4

Figure 4 : GAMS file error 1 ... 5

Figure 5 : Checking for parenthesis (F8 shortcut) ... 6

Figure 6 : Checking for parenthesis (2) .. 6

Figure 7 : Brackets in example 1: ... 7

Figure 8 : Adding the missing bracket ... 7

Figure 9 : Running a GAMS code: .. 8

Figure 10 : Process window of example 1 ... 9

Figure 11 : Process window of example 2 ... 10

Figure 12 : Location of the error in example 2 .. 11

Figure 13 : Correction of example 2 .. 11

Figure 14 : Process window of example 2 ... 12

Figure 15 : Process window for example 3 .. 13

Figure 16 : Error 3 in the GAMS file ... 13

Figure 17 : Set declaration: .. 14

Figure 18 : Correction of example 3: ... 15

Figure 19 : Process window of example 3 ... 15

Figure 20 : Process window of example 4 ... 16

Figure 21 : Error in example 4 ... 16

Figure 22 : Set declaration in PEP 1-1 .. 17

Figure 23 : Correction of error 4 .. 17

Figure 24 : Process window after correction of example 4 ... 18

Figure 25 : Example 5 .. 19

Figure 26 : Location of the error in the GAMS file (example 5) .. 19

Figure 27 : Social Accounting Matrix used in PEP-1-1 ... 20

Figure 28 : Correction of example 5 .. 21

Figure 29 : Checking example 5 solution ... 21

Figure 30 : Process window of example 6 ... 22

Figure 31 : Location of error 6 in the GAMS code ... 22

Figure 32 : Assignment of a value to a variable using the SAM .. 23

Figure 33 : Assignment of a value to a variable by giving it a value directly 23

Figure 34 : Assignment of a value to a variable by calibrating it ... 23

Figure 35 : Looking for PLO (i) in the GAMS code ... 24

Figure 36 : Correction of example 6 .. 24

Figure 37 : Verify example 6 solution .. 25

Figure 38 : Process window of example 7 ... 26

Figure 39 : Listing file of example 7 ... 27

94

Figure 40 : Assigning the value of KDO(k,j) in example 7 .. 27

Figure 41 : First half of the SAM used for PEP 1-1 ... 28

Figure 42 : Example 7 corrected .. 28

Figure 43 : Process window of example 7 after correction ... 29

Figure 44 : Process window of example 8 ... 30

Figure 44 : Closure rules in GAMS in example 8 .. 31

Figure 46 : Correction of example 8 .. 32

Figure 47 : Process window of example 8 after correction ... 32

Figure 48 : Process window of example 9 ... 33

Figure 49 : Listing file for example 9 (1) .. 34

Figure 50 : Listing file for example 9 (2) .. 34

Figure 51 : Listing file for example 9 (3) .. 35

Figure 52 : Listing file for example 9 (4) .. 35

Figure 53 : Display of XSTO(j) in example 9 ... 35

Figure 54 : Listing window of example 9 ... 36

Figure 55 : Display of XSTO in the listing file (example 9) ... 36

Figure 56 : Display of XSTO(j) and j in example 9 .. 37

Figure 57 : Display of XSTO and j in the listing file (example 9) .. 37

Figure 58 : Set definition in example 9 .. 38

Figure 59 : Correction of example 9 .. 38

Figure 59 : Process window after correction of example 9 ... 39

Figure 61 : Process window of example 10 ... 40

Figure 62 : Closure rules in GAMS in example 10 .. 41

Figure 63 : Equilibrium equations in example 10 .. 42

Figure 64 : Set definition in PEP 1-1 : .. 43

Figure 65 : Declaration of equation 89 in example 10 .. 43

Figure 66 : Declaration of equation 89 after correction in example 10 .. 43

Figure 67 : Equation 89 in example 10 .. 44

Figure 68 : Equation 89 after correction in example 10 .. 44

Figure 69 : Process window after correction of example 10 ... 45

Figure 70 : Process window of example 11 ... 47

Figure 71 : Listing file of example 11 ... 48

Figure 72 : Listing file of example 11 (2).. 49

Figure 73 : Looking for an Infes in the listing file .. 49

Figure 74 : Looking for infes in example 11 ... 50

Figure 75 : Listing file of example 11 ... 51

Figure 76 : Equation 1 in example 11 .. 51

Figure 77 : Correction of example 11 .. 52

Figure 78 : Process window of example 11 ... 52

Figure 79 : Process window of example 12 ... 53

Figure 80 : Infes in example 11 .. 53

Figure 81 : Writing of equation 55 in example 12 ... 54

95

Figure 82 : Calibration of the parameter gamma_INV(i) in example 12 54

Figure 83 : Correction of the calibration of parameter gamma_INV(i) : 55

Figure 84 : Process window of example 12 after correction ... 55

Figure 85 : Process window of example 13 ... 56

Figure 86 : Listing file for example 13 ... 57

Figure 86 : Equations 45 and 46 in example 13 ... 57

Figure 88 : Variable initialization in example 13 ... 58

Figure 89 : Initialization of YROW in example 13 .. 61

Figure 90 : Process window of example 13 after correction ... 61

Figure 91 : Process window of example 14 ... 62

Figure 92 : Listing file in example 14 ... 62

Figure 93 : Equations in example 14 ... 63

Figure 94 : Initialization in example 14.. 64

Figure 95 : Assignment of variables in example 14 ... 65

Figure 96 : partial reproduction of the SAM: .. 66

Figure 97 : Assignment of SROWO after correction in example 14 .. 67

Figure 98 : Process window after correction in example 14 ... 68

Figure 99 : Process window in example 15 ... 69

Figure 100 : Infes found in the listing file example 15 .. 69

Figure 101 : Initialization of YG in example 15 .. 70

Figure 102 : Correction of initial value for YG in example 15 .. 71

Figure 103 : Process window of example 15 after correction ... 71

Figure 104 : Process window of example 16 ... 72

Figure 105 : Listing file in example 16 ... 72

Figure 106 : SAM of PEP 1-1 .. 73

Figure 107 : Initialization of INV(i) in example 16 ... 74

Figure 108 : Assignment of INVO(i) in example 16 .. 75

Figure 109 : Display of INV(i) in example 16.. 75

Figure 110 : Display of INV(i) and INVO(i) in example 16 .. 76

Figure 111 : Obtaining volumes from values in example 16 ... 76

Figure 112 : Process window of example 16 after correction ... 77

Figure 113 : Process window for example 17 .. 78

Figure 114 : Infes in example 17 .. 78

Figure 115 : Equation 63 in the GAMS code in example 17 .. 79

Figure 116 : Correction of equation 63 in example 17 .. 80

Figure 117 : Process window after correction of example 17 ... 80

Figure 118 : Increase of labour supply by 20% in example 18 .. 82

Figure 118 : Process window in example 18 ... 83

Figure 120 : Check on variable LEON after simulation in example 18 .. 83

Figure 121 : Reviewing equations in example 18 .. 84

Figure 122 : Correction of example 18 .. 85

Figure 123 : Check on variable LEON after correction in example 18 ... 85

96

Figure 124 : Checking on LEON after a simulation in example 19... 86

Figure 125 : Price equations in example 19 .. 87

Figure 126 : Correction of equation 78 in example 19 .. 88

Figure 127 : Checking of LEON after correction of example 19 .. 88

Figure 128 : Value of LEON in the listing file in example 20 .. 89

Figure 129 : Equations in example 20 ... 90

Figure 130 : Correction of equation 25 in example 20 .. 90

Figure 131 : Check on variable LEON after correction in example 20 ... 91

97

Table of contents

1. Compilation errors ... 3

Example 1: ... 3

Example 2: ... 10

Example 3: ... 13

Example 4: ... 16

Example 5: ... 19

Example 6: ... 22

2. Execution errors: ... 26

Example 7: ... 26

Example 8: ... 30

Example 9: ... 33

Example 10: ... 40

3. Calibration errors... 46

Example 11: ... 47

Example 12: ... 53

Example 13: ... 56

Example 14: ... 62

Example 15: ... 69

Example 16: ... 72

Example 17: ... 78

4. Specification errors .. 81

Example 18: ... 82

Example 19: ... 86

Example 20: ... 89

