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Impact Evaluation and Analysis of Development Interventions III

Introduction to Causal Models

1 Introduction to Causality and Randomized Trials

Causal effects are of interest to economists (and other social scientists) because we would

often like to know what the effects of manipulating a particular program or policy are. Take,

for example, the return to schooling – possibly the most heavily analyzed quantity in labor

economics (maybe even in all applied microeconomics!). Using survey data in the United

States, it is easy to estimate the relationship between schooling and earnings – we can, for

example, use linear regression to approximate the expected value of earnings conditional

upon years of schooling. However, this only reveals to us how these two variables covary in

the US population. It does not, in general, reveal what effects a policy manipulation that

increased schooling by one year for each student in the US might have on earnings. Using

the terms that you are familiar with from other econometrics courses, years of schooling is

“endogenously” determined by individual students and their parents. If you are interested

in predicting how earnings change when you draw a different individual with a higher level

of education from the US population, then it is perfectly reasonable to apply the regression

coefficient. The policy manipulation, however, refers to an “exogenous” change in years

of schooling. There is therefore no reason that the regression coefficient – estimated using

data in which schooling is endogenously determined – should correspond to the effect of an

exogenous change in years of schooling. Note that it is not the case that one quantity is

“right” and the other is “wrong” – which one is “correct” depends on what question you are

trying to answer. Rather, it’s simply the case that the two quantities are different, and one

cannot be substituted for the other.

Despite the central role that causality plays in answering policy-relevant questions (since

a policy intervention implies, almost by definition, some sort of external manipulation),

many econometrics courses do not formally present or discuss a model of causality. Instead,
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they often begin by presenting a structural model of some economic phenomenon – which

is implied to have an underlying causal interpretation – and then proceed to discuss the

cases in which linear regression (or some other estimator) will estimate this model. This

presentation, however, sometimes leaves students thinking that a regression is inherently

“wrong” or useless if it doesn’t provide unbiased or consistent estimates of an underlying

structural model (which, as we will see later, is certainly not the case). It is also true

that in some (many?) cases the structural parameters themselves do not correspond to any

meaningful causal effect without further transformations or assumptions.

The causal model we discuss today has come to be known as the Rubin Causal Model

(RCM), in reference to Rubin (1974) and subsequent publications. The RCM relies heavily

upon the notion of potential outcomes – that is to say, possible outcomes under different

values of a variable we shall refer to as the treatment – and it is useful for two reasons. First,

it is useful when understanding many common estimation techniques, such as instrumental

variables, regression discontinuity design, propensity score matching, etc. More importantly,

however, it can be useful in framing or understanding what question you are trying to

answer or what effect you are trying to estimate. If the quantity cannot be conceptualized

as arising from an experimental manipulation of some type of treatment, then it cannot

be estimated from a randomized trial, and the techniques that we learn which simulate

randomized experiments will be inappropriate.1

1.1 The Rubin Causal Model

Suppose that we have N units, i = 1, ..., N , drawn randomly from a large population. We

are interested in the effect of some binary treatment variable, Di, on an outcome, Yi. We

refer to Di = 1 as the treatment condition and Di = 0 as the control condition. Given

these two possiblities – treatment and control – we postulate the existence of two potential

outcomes for each unit: Yi(0) under the control condition and Yi(1) under the treatment

1Of course, the question may still be of interest, but you will have to find a different (possibly easier!)
way to answer it, and you should understand that the answer will not correspond to the effect of a policy
intervention.
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condition.2 The key here is that, although we will never observe both Yi(0) and Yi(1) (we

will observe at most one or the other, but never both), it is theoretically possible that we

could observe either. In Holland’s terminology, every unit must be potentially exposable to

every value of the treatment variable. If you cannot conceptualize both Yi(0) and Yi(1) for

the same unit, then D does not correspond to a treatment that is potentially manipulable

and we cannot talk about the causal effect of manipulating D without further defining the

problem. Holland, for example, argues that race is not something to which each unit is

potentially exposable – we do not in general think of race as being something that we can

experimentally manipulate, and it is unclear what it would mean to ask what my potential

outcomes would be if I changed my race to be, for example, African-American.

Using the notation above, we define the causal effect of treatment D = 1 on outcome Y

for unit i as:

Yi(1)− Yi(0) = τi

Alternatively, we often refer to τi as the treatment effect for unit i. Several things are

important to note here. First, the effect of a treatment is always defined in a relative sense

– in this case it is the effect of the treatment condition D = 1 relative to the potential

outcome that would have occurred under the control condition D = 0. In medicine, D = 1

might correspond to giving a drug (e.g., Lipitor) to a patient, while D = 0 corresponds to

giving a placebo to the patient. In development, D = 1 might correspond to implementing

a conditional cash transfer program in Senegal, while D = 0 corresponds to not doing so.3

Second, the effect of the treatment need not be constant across different units, as indicated

by the fact that τ is indexed by i – many (probably most) treatments have heterogeneous

2Note that the notation here is slightly different than in the excellent Holland (1986) article. In Holland’s
article, the subscript of Yt(i) corresponds to treatment/control while the argument inside the parentheses
corresponds to the unit number (1, ..., N in our case). In our notation, the subscript corresponds to the unit
number while the argument inside the parentheses corresponds to treatment/control. We do this because
our notation corresponds to the notation used in seminal articles such as Angrist, Imbens, and Rubin (1996).

3If the treatment variable can take on more than two values (e.g., 0, 1, or 2), then multiple treatment
effects exist for each unit (e.g., Yi(1)− Yi(0) and Yi(2)− Yi(1)), and these effects need not be equal, just as
the relationship between a dependent variable and an explanatory variable need not be linear.
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effects. Finally, we will never observe both Yi(1) and Yi(0) for any given unit. This is because,

although it is not evident in the notation, treatments also involve a time dimension. When

we write D = 1 and D = 0, we implicitly mean that we are applying the treatment or control

condition at a specific point in time. In the medical example, if we administer Lipitor to a

patient on his 55th birthday, we cannot simultaneously not administer Lipitor to him at the

exact same moment. In the development policy example, if we implement a conditional cash

transfer program for the 2014 fiscal year in Senegal, we cannot simultaneously not implement

that program in Senegal during the same fiscal year. We might choose not to implement

the program in 2013 or 2015 – just as we might choose not to administer Lipitor to the

patient on his 54th or 56th birthdays – but since other factors affecting the unit can change

during the interim period, we are not guaranteed of observing the outcome that would have

occurred had we implemented the control condition in 2014 (or on the 55th birthday).

This inability to observe both Yi(0) and Yi(1) for any given unit leads to the following

theorem:

Fundamental Problem of Causal Inference: It is impossible to observe the value of

Yi(0) and Yi(1) on the same unit i and, therefore, it is impossible to observe τi, the effect for

unit i of the treatment on Yi. (Holland 1986)

The Fundamental Problem of Causal Inference would appear to rule out any precise

estimation of τi, and, at the unit level, it is true that we can never observe the exact

treatment effect. However, all is not lost. We are often interested in relationships that

hold “on average,” or in expectation. In this context, it is possible to estimate quantities

of interest. We define the average causal effect or average treatment effect (ATE) of the

treatment relative to the control as the expected value of the difference Yi(1)− Yi(0), or

τ̄ = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)]

With the appropriate research design, it is possible to estimate ATE.
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1.2 Estimation of Treatment Effects: The Randomized Controlled
Trial

For each unit i, there exist the quantities (Yi(0), Yi(1), Di). However, we only observe (Yi,

Di), where

Yi = (1−Di)Yi(0) +DiYi(1)

The distinction between what exists conceptually and what we can actually observe

is subtle but tremendously important. Although we can only observe Yi(0) for untreated

units and Yi(1) for treated units, we can conceive of the counterfactual quantities Yi(1) for

untreated units (i.e., the outcome that control unit i would have realized under the treatment

condition) and Yi(0) for treated units (i.e., the outcome that treated unit i would have

realized under the control condition). Understanding the distinction between the observed

Yi and the unobserved-but-still-existent counterfactual quantities (Yi(0) or Yi(1)) will be

crucial in subsequent derivations in this course.

By definition,

E[Yi|Di = 1] = E[Yi(1)|Di = 1]

E[Yi|Di = 0] = E[Yi(0)|Di = 0]

Note that in general E[Yi(0)|Di = 0] 6= E[Yi(0)|Di = 1] (and E[Yi(1)|Di = 1] 6=

E[Yi(1)|Di = 0]). That is to say, people who select into the control condition generally have

different outcomes under the control condition (Yi(0)) than people who do not select into the

control condition. Thus, the average control outcome for the control unit E[Yi(0)|Di = 0]

need not equal the average control outcome for all units E[Yi(0)], which is a combination of

both control and treated units. The fact that we do not observe control outcomes (Yi(0)) for

any of the treated units, however, does not prevent us from imagining the existence of these

counterfactual outcomes. In the context of our medical example, Y is cholesterol level and
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D represents treatment with Lipitor. Patients who choose to take Lipitor (Di = 1) are likely

to have high cholesterol levels in the absence of Lipitor (i.e., Yi(0) is high, though we do not

observe Yi(0) for them). Patients who choose not to take Lipitor (Di = 0) are likely to have

low cholesterol levels in the absence of Lipitor (i.e., Yi(0) is low, and for these patients we

observe Yi(0) since Yi = (1−Di)Yi(0) +DiYi(1) = Yi(0)). The average untreated cholesterol

level for patients not taking Lipitor, E[Yi(0)|Di = 0], is therefore less than both the average

untreated cholesterol level for treated patients, E[Yi(0)|Di = 1], and the average untreated

cholesterol level for all patients, E[Yi(0)].

There is, however, an important case in which E[Yi(0)|Di = 0] = E[Yi(0)|Di = 1] =

E[Yi(0)] (and E[Yi(1)|Di = 1] = E[Yi(1)|Di = 0] = E[Yi(1)]). Suppose that the treatment

assignment, D, is randomly assigned. In that case, D is independent of both Y (0) and

Y (1). The conditional distribution of Yi(0) (and Yi(1)) given Di is therefore equal to the

unconditional distribution, and it must be the case that

E[Yi(0)|Di = 0] = E[Yi(0)]

E[Yi(1)|Di = 1] = E[Yi(1)]

The average causal effect, τ̄ , is thus

τ̄ = E[Yi(1)]− E[Yi(0)] = E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0] = E[Yi|Di = 1]− E[Yi|Di = 0]

We can easily estimate τ̄ by taking the difference between the average value of Yi in

the treatment group and the average value of Yi in the control group. Because it allows

estimation of ATE, the randomized controlled trial is considered the “gold standard” of

evidence in medicine, and in many areas of social science as well.

In some instances we may be willing to assume that E[Yi(0)|Di = 0] = E[Yi(0)|Di = 1] =

E[Yi(0)] but not that E[Yi(1)|Di = 1] = E[Yi(1)|Di = 0] = E[Yi(1)]. In other words, we may

be willing to assume that the untreated potential outcomes are mean-independent of the
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treatment assignment, but not that the treated potential outcomes are mean-independent

of the treatment assignment. This is equivalent to saying that there is no selection into

treatment based on the level of untreated outcomes, but there is selection into treatment

based on the potential gains of being treated. You could probably write down an economic

model that would give this result, but to be honest I doubt it would be a palatable assumption

in most empirical settings. Regardless, under this slightly weaker assumption, you can still

identify

τ̄TOT = E[Yi(1)|Di = 1]− E[Yi(0)|Di = 1]

This quantity is commonly referred to as “the effect of the treatment on the treated,” or

TOT (treatment-on-treated) or ATOT (average treatment-on-treated) or some other strange

permutation of those letters. It is the causal effect of the treatment on those who select into

treatment.

1.3 The Stable Unit Value Treatment Assumption: SUTVA

Beyond the assumption of random assignment of D, there is an implicit assumption em-

bedded in the previous section that is known rather awkwardly as the stable unit treatment

value assumption, or SUTVA. Let D be a N × 1 column vector that contains the treatment

values for all N units. Formally, SUTVA states that

If Di = D′i, then Yi(D) = Yi(D
′).

We have not yet defined what Yi(D) is, but it is exactly analogous to our definition of

Yi(Di) (i.e., Yi(0) and Yi(1)). That is to say, Yi(D) is the potential outcome for unit i under

treatment regime D. Now, instead of just specifying whether unit i is receiving the treatment

or the control, we are specifying values of Di for all units in the sample. For this reason,

SUTVA is often referred to as the “no interference” assumption, since it states that unit

i ’s potential outcomes are unaffected by whether unit j (j 6= i) is treated or untreated. A
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classic example of SUTVA not holding is the case of vaccines. If Di represents inoculation of

unit i with the measles vaccine, and Yi represents whether unit i gets measles, clearly Yi(Di)

depends on the values of the entire vector D. In particular, if Dj = 1 for all j 6= i, then

Yi(0) will likely be 0 despite the fact that unit i is unprotected, because there are no other

unprotected units to spread the disease to unit i. If Dj = 0 for all j 6= i, however, then Yi(0)

might change to 1. Another example of SUTVA not holding is if the treatment is a carbon

tax intended to address global warming. Suppose that such a tax is enacted in the European

Union (EU). If Ye(0) is the average temperature in the EU (in the year 2100) in the absence of

an EU carbon tax, it should be clear that Ye(0) depends on whether other regions implement

carbon taxes. If SUTVA does not hold, then there is not just one treatment effect, τi, per

unit but rather a multitude of treatment effects (one for each different permutation of D).

More importantly, it may be impossible to estimate the treatment effect relative to the “no

intervention” scenario (i.e., the scenario in which Di = 0 for all units i), because as soon as

one unit is treated, all are potentially affected (so it is impossible to construct an unbiased

estimate of E[Yi(0)] with the data).

Rubin (1986) discusses SUTVA in the context of poorly defined treatments. That is to

say, he focuses on cases in which, even if D = D′, it is still the case that Yi(D) 6= Yi(D
′).

This occurs because the treatment, and in particular the assignment mechanism, is not

precisely defined, so even though D = D′, it’s really not the same treatment (we will discuss

some examples shortly). In subsequent years, however, interest has focused on the “no

interference” aspect of SUTVA – in many cases, treating one unit indirectly affects other

units, and SUTVA does not hold.

1.4 Applications and Discussion

1.4.1 Poorly Defined Treatments

When does it make sense to talk about D as a cause and when does it not? Holland (1986)

has a nice discussion on pp. 954-955 that I urge you to read, as does Rubin’s comment to
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that article. In Holland’s example, there are three hypothetical scenarios:

(1) She scored highly on the exam because she is female.

(2) She scored highly on the exam because she studied.

(3) She scored highly on the exam because her teacher tutored her.

In scenario (3), it is clear that the treatment is well-defined: the teacher tutors her. We

can easily conceive of manipulating whether or not this tutoring occurs. In scenario (1),

Holland argues that the student’s gender cannot be considered a “cause” because we cannot

manipulate it. It is certainly the case that the treatment is not well-defined in this case and

cannot fit within the causal framework, although Rubin points out that further refinements

could allow the scenario to fit within the RCM. For example, if we said, “She scored highly

on the exam because she received sex reassignment surgery,” then we would have a clearly

defined treatment. Scenario (2) is the most problematic because it involves a voluntary

activity that the student can choose to do. Although we could certainly conceive of an

intervention that might prevent the student from studying (anesthesia, for example, would

be a pretty good bet), it is hard to imagine a manipulation that would force the student

to study (or at least force her to study as well as she would if she voluntarily studied).

Since we cannot manipulate this attribute (studying for the exam), we cannot think of it as

cause, at least not within the potential outcomes framework. Hence Holland’s phrase, “No

Causation Without Manipulation.” It should also be clear from this discussion why there is

such a close linkage between the potential outcomes framework and policy relevance. If you

can’t conceive of manipulating a particular attribute, then by definition you cannot design

a policy that would manipulate that attribute!

1.4.2 Effects of Causes vs. Causes of Effects

Holland writes that “an emphasis on the effects of causes rather on the causes of effects is,

in itself, an important consequence of bringing statistical reasoning to bear on the analysis

of causation and directly opposes more traditional analyses of causation.” This distinction
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between effects of causes and causes of effects may seem somewhat pedantic. It is not.

A concrete example should help clarify the distinction. Consider the obesity “epidemic,”

an issue of great importance to both agricultural economists (on the input side) and health

economists (on the output side). Researchers in different fields cite a myriad of “causes” of

this epidemic: increased consumption of snack foods, larger portions at restaurants, more

frequent consumption at restaurants, more sedentary jobs, the introduction of high fructose

corn syrup, etc. Under these explanations, however, it is rarely clear what the counterfactual

is. Take, for example, the increased consumption of snack foods over the last 30 years. One

possible counterfactual is what would have happened if people had not increased their con-

sumption of snack foods while everything else remained unchanged. It is unclear, however,

what policy manipulation could enforce that counterfactual scenario. Although it is easy to

imagine limiting snack food consumption (through a quota or a tax, for example), it is im-

possible to imagine doing so while simultaneously preventing individuals from compensating

in any other manner. Another possible counterfactual is to imagine a world in which the

complex set of technologies and changes in consumer preferences that led to the increase in

snacking had been inhibited from developing. Even if it were possible to imagine this sort

of manipulation, however, there is no guarantee that total caloric consumption would fall

by exactly the amount that snack food consumption has increased (in fact, it almost surely

would not). It becomes clear that the answer to the question of what has “caused” the

obesity epidemic is every single thing about the world that affects weight and has changed

since 1970. But even this turns out to be an incomplete answer because the distribution of

weight in 1970 is itself a cause of the distribution of weight today, so the obesity epidemic

is in fact “caused” by everything in the history of the world that has ever had an effect on

weight. As Holland (1986) notes, there is really no definable answer to this type of question.

In contrast to the causes of effects – which is effectively an unlimited exercise in accounting

and description – the effects of causes are clearly defined under the RCM. Even if we cannot

measure them with existing data, we can at least conceive of what they are.
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1.4.3 Quasi-experimental Methods

For reasons that should be obvious, randomized controlled trials (RCTs) have become pop-

ular in the program evaluation literature. However, in many cases a RCT is too expensive,

infeasible, or potentially unethical. In those cases we have no choice but to use obser-

vational data (i.e., data in which the treatment is not randomly assigned) if we wish to

estimate a treatment effect. The modern program evaluation toolkit contains many different

techniques to estimate treatment effects: regression, matching, propensity score methods,

differences-in-differences, instrumental variables, regression discontinuity, and more. How-

ever, the underlying motivation for all of these techniques is that they are attempting to

recreate or simulate a randomized experiment within the observational data. That is to say,

they are attempting to isolate some subset of variation in the treatment Di that can be

considered to be “as good as randomly assigned.”

One implication of this is that if you cannot conceptualize of an idealized RCT to estimate

the treatment effect that you are interested in, then you likewise won’t be able to use any

of the program evaluation techniques to estimate that treatment effect. That simply follows

from the fact that the program evaluation techniques are attempting to recreate the idealized

RCT, so they can never do better than that RCT! Before developing a research design for

estimating a specific treatment effect, I thus often find it useful to ask the question, “What

is the idealized experiment that I would run to estimate this effect if I had unlimited funding

and no data constraints?” If you cannot suitably answer this question, then the effect you’re

hoping to estimate is not compatible with the techniques we’re learning here! Furthermore,

by answering this question you may gain insight in developing the research design that you

apply to the observational data.

2 Regression: What does it do?

Linear regression is the bread and butter of econometrics, so it is worth doing a quick review

of it. But this review is unlikely to resemble anything you saw in other econometrics courses,
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primarily because it focuses on what linear regression is, rather than on what you would like

it to be. That is to say, as long as you satisfy certain trivial conditions (e.g., your matrix

of regressors is full rank), you can always run a linear regression. And there is absolutely

nothing wrong with doing that – regardless of problems involving “endogeneity” or “omitted

variables” or “measurement error” – as long as you interpret the results appropriately. In

this section we will focus on what I refer to as “agnostic regression.”

2.1 The Conditional Expectation Function

Consider a dependent variable, yi, and a vector of explanatory variables, xi. We are interested

in the relationship between the dependent variable and the explanatory variables. There are

several possible reasons that we may be interested in this relationship, including:

1. Description – What is the observed relationship between y and x?

2. Prediction – Can we use x to create a good forecast of y?

3. Causality – What happens to y if we experimentally manipulate x?

It is generally the last item that generates comments about “exogeneity conditions” and

so forth. We will ignore all that negative energy for the moment and, instead of worrying

about what you can’t infer, focus on what you can infer. Think positive!

Of course, few real-world relationships are deterministic. Recognizing this fact, we focus

on relationships that hold “on average,” or “in expectation.” Given our variables y and x,

we may be interested in the conditional expectation of y given x. That is to say, given a

particular value of x, where is the distribution of y centered? This relationship is given by

the Conditional Expectation Function, or the CEF.

E[yi|xi] = h(xi)

We define the CEF residual as:
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εi = yi − h(xi) where

E[εi|xi] = 0

Note that, because εi is the CEF residual, E[εi|xi] = 0 holds by definition – we do not

require any exogeneity assumptions regarding xi.

Proof.

E[εi|xi] = E[yi − h(xi)|xi] = E[yi|xi]− E[h(xi)|xi]

= E[yi|xi]− h(xi) = E[yi|xi]− E[yi|xi] = 0

To recap, the CEF residual always has zero conditional expectation. By definition. No

assumptions necessary. Always.

Theorem. CEF residuals are mean-independent of the arguments in the CEF, xi (see

above). They are therefore orthogonal to any function of the conditioning variables.

Proof. Iterated expectations.

E[εi · f(xi)] = E[E[εi · f(xi)|xi]] = E[E[εi|xi]f(xi)] = E[0] = 0

More importantly, the CEF is the “best” function of x that exists for predicting y (where

“best” is defined in terms of expected squared loss).

Theorem. E[yi|xi] = argming E[(yi − g(xi))
2] In other words, the CEF is the function

that minimizes the expected squared deviations from yi. We say that “the CEF is the

minimum mean-square error (MMSE) predictor for yi given xi.”

Proof.

E[(yi − g(xi))
2] = E[((yi − E[yi|xi]) + (E[yi|xi]− g(xi)))

2] =

E[(yi − E[yi|xi])2 + 2(yi − E[yi|xi])(E[yi|xi]− g(xi)) + (E[yi|xi]− g(xi))
2] =
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E[E[(yi − E[yi|xi])2 + 2(yi − E[yi|xi])(E[yi|xi]− g(xi)) + (E[yi|xi]− g(xi))
2|xi]] =

E[E[(yi − E[yi|xi])2|xi] + 2(E[yi|xi]− E[yi|xi])(E[yi|xi]− g(xi)) + (E[yi|xi]− g(xi))
2] =

E[E[(yi − E[yi|xi])2|xi]] + E[(E[yi|xi]− g(xi))
2]

It should be clear that choosing g(xi) such that g(xi) = E[yi|xi] minimizes the second

term in the last line. The first term in the last line does not contain g(xi) and is therefore

unaffected by our choice of g(xi). The CEF, E[yi|xi], therefore solves ming E[(yi − g(xi))
2].

2.2 Regression and the CEF: Why We Regress

Clearly the CEF has some desirable properties in terms of summarizing the relationship

between xi and yi and making predictions about yi given xi. In particular, we have seen

that it is the MMSE predictor of yi. But what does this have to do with linear regression,

and why might we want to use linear regression?

2.2.1 Reason the First: Regression-CEF Theorem

Theorem. If the CEF is linear, then the regression of yi on xi estimates the CEF. Formally, if

E[yi|xi] = xiγ, then γ = E[x′ixi]
−1E[x′iyi] (which is what the regression coefficient converges

to).

Proof.

E[x′ixi]
−1E[x′iyi] = E[x′ixi]

−1E[E[x′iyi|xi]] = E[x′ixi]
−1E[x′iE[yi|xi]] =

E[x′ixi]
−1E[x′ixiγ] = E[x′ixi]

−1E[x′ixi]γ = γ

Of course, there is no reason the CEF has to be linear. Two of the most common sufficient

conditions for a linear CEF are: (1) joint normality of xi and yi or (2) a saturated model for

discrete regressors. A saturated model is one in which you estimate a separate parameter for

each point in the support of xi (e.g., you have a separate dummy variable for each unique



M.L. Anderson, AGRODEP Impact Eval. Training III, June 2014 15

value of the vector xi in your data set). This is more common in empirical work than joint

normality.

In most cases, however, the CEF is not linear. But we still run regressions anyway. Why

do we do this? One reason is that it is computationally tractable and that we understand

its properties both when it is correctly specified and under misspecification (or, at least, we

understand its properties under misspecification better than we understand the properties

of other estimators). Nevertheless, there are good theoretical reasons to regress as well.

2.2.2 Reason the Second: BLP Theorem

Theorem. If you want to predict yi, and you limit yourself to linear functions of xi, then

xiβ = xiE[x′ixi]
−1E[x′iyi] is the best linear predictor (BLP) of yi in a MMSE sense. Formally,

β = E[x′ixi]
−1E[x′iyi] = argminb E[(yi − xib)2].

Proof.

∂E[(yi − xib)2]/∂b = 2E[x′i(yi − xib)] = 0

E[x′iyi]− E[x′ixi]b = 0

b = E[x′ixi]
−1E[x′iyi] = β

If you’re limiting yourself to linear combination of xi, then linear regression gives you

the best predictor of yi. Of course, this isn’t a big surprise given that the OLS estimator is

derived by minimizing the sample analog of E[(yi − xib)2]. Regardless, this property is nice

if you’re in the business of forecasting, but it’s not as useful if your interest is in estimating

the CEF as a summary of the underlying relationship between yi and xi. Which brings us

to our third reason to regress (arguably the best reason).
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2.2.3 Reason the Third: Regression Approximation Theorem

Theorem. The MMSE linear approximation to the CEF is β = E[x′ixi]
−1E[x′iyi]. Formally,

β = E[x′ixi]
−1E[x′iyi] = argminb E[(E[yi|xi]− xib)2].

Proof.

∂E[(E[yi|xi]− xib)2]/∂b = 2E[x′i(E[yi|xi]− xib)] = 0

E[E[x′iyi|xi]]− E[x′ixi]b = 0

b = E[x′ixi]
−1E[x′iyi] = β

So regression provides the best linear approximation to the CEF, even when the CEF is

non-linear. Regression can therefore give you a pretty decent approximation of the CEF as

long as you don’t try to extrapolate beyond the support of xi.

2.3 Discussion

If your object of interest is the CEF, then linear regression is a good tool for estimating it.

Specifically, it is the best linear predictor in terms of minimizing the mean squared error

from the CEF. More importantly, this result depends on absolutely nothing. In particular,

it does not depend on:

1. Whether your data are i.i.d.

2. Whether you treat your regressors as random variables or fixed quantities.

3. Whether your regressors are correlated with the CEF residuals (by definition, they

are not, since the residuals are mean-independent of any function of the conditioning

variables).

4. Whether the CEF is linear or not.
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5. Whether your dependent variable is continuous, discrete, non-negative, or anything

else.

Regression is therefore remarkably robust as an estimation tool, provided that you inter-

pret it for what it actually is – an approximation of the conditional expectation function –

rather than what you might like it to be (an estimate of a causal relationship). So if you’re

only interested in description or prediction, we can probably end the class right here.

2.4 Application: Predicting College Success

Geiser and Santelices (2007) use high school GPA, standardized test scores (SAT), and other

covariates to predict college performance (college GPA) using linear regression for University

of California (UC) freshman entering between Fall 1996 and Fall 1999. The results from this

exercise are listed in Table 4 of their article, reproduced below. They find that, in this

sample, high school grade point average (GPA) is a more effective predictor of college GPA

than any other measure. In particular, it is much more effective than SAT I (a standardized

test that most college applicants take). This can be seen in at least two ways. First, in

comparing Model 1 – which uses high school GPA as a predictor – and Model 2 – which

uses SAT I as a predictor – we see that Model 1 has a much higher R2; in other words, high

school GPA is explaining much more of the variation in college GPA than SAT I score is

(Note: This is probably the only time in this course that you will hear reference to R2. In

general it is not an interesting statistic in answering policy-relevant questions.) We also see,

in Model 7, that the standardized coefficient on high school GPA is substantially larger than

the standardized coefficient(s) on SAT I (the standardized coefficient is a normal regression

coefficient that has been rescaled to indicate how many standard deviations y changes with

a one standard deviation change in x). Moving up one standard deviation in the high school

GPA distribution is therefore much more beneficial for college GPA (in a predictive sense)

than moving up one standard deviation in the SAT I score distribution.

Does this relationship answer any interesting, policy-relevant questions? Arguably, yes.
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If you are a UC admission officer, and you are tasked with reducing acceptance rates due

to state budget cuts (sadly, this scenario is likely to occur), then you can use the regression

results to predict which students are least likely to succeed. We know from the previous

theorems that the CEF provides the MMSE prediction of y (college GPA) and that regression

provides the MMSE linear approximation to the CEF. So in a predictive sense you are likely

to do well (at least relative to alternative choices), and in this case what you care about is

prediction.

These results also have policy relevance in that the University of California would like

to maintain a diverse student body but is not allowed to give any weight to ethnicity as

an admission criterion. UC administrators are aware, however, that weighting SATs more

heavily (as is traditionally done) tends to favor Caucasians (and possibly Asians?), while

weighting high school GPA more heavily tends to favor African Americans and Latinos (in

a relative sense). But will putting more weight on high school GPA and less weight on SAT

scores result in a lower quality student body? The results from Table 4 indicate that it will

not; in fact, if anything, it may result in a higher quality student body.

Are the estimated relationships causal? Highly unlikely. Even after controlling for

parental education and income, there are probably unobserved individual, family, neigh-

borhood, and peer characteristics that affect college success and are correlated with high

school GPA and SAT scores.4 The regression results, however, are still useful for prediction

and have interesting applications in policy-relevant questions.

One can still take issue with the results along multiple dimensions. For example, should

some adjustment be done to GPA to reflect the student’s choice of major?5 Might there be

other variables collected from the applicants that could improve the predictive power of the

4In fact, it doesn’t even make sense to talk about an experimental manipulation of high school GPA or
SAT scores. The effects on college success will almost surely depend on whether the treatment entails raising
these attributes through cram sessions or through mentoring programs or through intensive intervention
earlier in life. The treatment is better defined as the actual intervention than as raising GPA by one point
or increasing SAT scores by 100 points.

5I would strongly recommend against getting into this debate – it will be a great way to alienate a lot of
colleagues very quickly.
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model? Nevertheless, the fact remains that the results are useful and interesting despite the

fact that the coefficients do not have causal interpretations. This example makes appropriate

use of a descriptive relationship estimated via linear regression, which is probably more than

can be said for the vast majority of empirical applications in economics.

3 Selection on Observables Designs

We now begin our discussion of what we refer to as “selection on observables” designs. The

key assumption underlying these designs is that the treatment assignment is “ignorable”

– which you can interpret as “as good as randomly assigned” – after you condition on a

set of observable factors. There are a variety of estimation techniques available in this

scenario: standard linear regression, flexible nonparametric regression, matching estimators,

and propensity score estimators. The underlying (untestable) assumption of all of these

estimators, however, is that you observe all of the factors that affect treatment assignment

and are correlated with the potential outcomes. In other words, to the extent that there

is systematic selection into treatment, this selection is only a function of the observable

variables. Hence, if you can “control” for the effects of these variables on the probability of

selection, then you can produce consistent estimates of causal effects. The flip side is that,

if you don’t observe all the determinants of selection, then these methods do not, in general,

produce estimates with a causal interpretation. This important fact is often overlooked by

applied practitioners who focus on the sophistication of the estimation technique (matching

and propensity score techniques are somewhat en vogue these days). In my opinion, the

underlying selection on observables assumption is too strong to hold in most cases, so these

methods are probably applied more often than they should be. Nevertheless, in some cases the

assumption is palatable (or at least defensible), and in those cases these techniques can be

quite helpful.6

6For example, consider a case in which individuals apply for some program or job, and then are assigned
to different areas/departments/treatments/whatever based upon the data in their applications. In this
scenario, the researcher can observe all of the non-random factors that affected selection (i.e. the data in
the applications), and the selection on observables assumption clearly makes sense.
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Suppose we wish to estimate the effect of a treatment, Di, on an outcome, Yi. The key

underlying assumption motivating all selection on observables designs is that the treatment

is independent of the potential outcomes (particularly the untreated potential outcomes)

after conditioning on a set of observable covariates, Xi. We write this assumption as:

(Yi(1), Yi(0)) ⊥ Di|Xi

This assumption is referred to as the “unconfoundedness assumption,” the “selection on

observables assumption,” or the “conditional independence assumption.” When combined

with an assumption about overlap, 0 < P (Di = 1|Xi) < 1, it is referred to as “strongly

ignorable treatment assignment.”

In this case the covariates Xi are potentially confounding variables – i.e., variables that

are correlated both with Di and Yi – that we must control for if we wish to estimate the

causal effect of D on Y . The selection on observables assumption implies that, if you hold

fixed the covariates Xi, then the treatment Di is “as good as randomly assigned.” In other

words, if two units – one treated and one untreated – have identical values of Xi, then you

can compare these two units as if they were randomly assigned. However, to take advantage

of the selection on observables assumption, you need to find a way to “hold X constant”

while comparing treated and untreated units.

One method of “holding X constant” that you are all familiar with is linear regression.

Specifically, consider a regression of Yi on Di that controls for Xi:

Yi = α + βDi +Xiδ + ui

Loosely speaking, this regression “controls” for the relationship between Xi and Yi and

thus estimates the causal effect of Di on Yi. However, as you are likely aware from previ-

ous econometrics courses, whether this regression is sufficient to control for the potentially

complex relationship between Xi and Yi depends on whether the conditional expectation

function E[Yi|Di, Xi] is linear. If this CEF is non-linear, then we know from our previous
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discussion that the linear regression will give us the “best” linear approximation to the non-

linear CEF. However, if the CEF is highly non-linear, then this linear approximation may be

very poor, particularly in cases in which the regression must engage in substantial extrapo-

lation because the treated units have very different values of X than the control units. This

fact has motivated the development of alternatives to regression that are “non-parametric”

in the sense that they are less dependent on functional form assumptions. We briefly discuss

two of these alternatives – matching and propensity score methods – below.

3.1 Matching

The idea behind matching is very simple. If the selection on observables assumptions holds,

i.e., Yi(0), Yi(1) ⊥ Di|Xi, then we can estimate τ(x) = E[Yi(1) − Yi(0)|Xi = x] because

the treatment is effectively randomly assigned after conditioning on Xi. The idea behind

matching is to compare treated units (Di = 1) to control units (Di = 0) that have similar

values of Xi. This guarantees that every treatment-control comparison is performed on units

with identical (or close to identical) values of Xi, so we are literally conditioning on Xi = x.

Given the selection on observables assumption, we know that Di is as good as randomly

assigned after conditioning on Xi, so we should get causal estimates.

For every treated unit, i.e. every unit withDi = 1, the goal of the matching estimator is to

find a comparison unit among the controls that has similar values of observable characteristics

Xi. It is important to note, however, that this “comparison unit” need not be a single unit –

rather, it can be a composite (i.e., a weighted average) of several different control units that

have similar values of Xi.
7 Assume that there are NT treated units and NC control units.

Define NT sets of weights, with NC weights in each set: wi(j) (i = 1, ..., NT , j = 1, ..., NC).

For each set of weights, let
∑

j wi(j) = 1. Then the generic matching estimator is:

τ̂M =
1

NT

∑
i∈{D=1}

[yi −
∑

j∈{D=0}

wi(j)yj]

7There are obvious efficiency gains to doing this, particularly if there are more control units than treated
units.
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In other words, we are simply computing the average difference between the treated

units and the composite comparison units. The key to this estimator is how you calculate

the weights used to construct the composite comparison units, wi(j). For example, you could

set wi(j) = 1
NC

. In that case,
∑

j wi(j)yi simply equals the control group mean, ȳC , for all

i, and τ̂M is just the difference in means between the treated and control groups. Obviously

that is not very exciting estimator and it does not solve the selection on observables problems.

In general, we want to choose wi(j) so that it measures the “nearness” of Xj to Xi

– wi(j) is what I will call the distance measure. If X is discrete, then in principle you

could choose wi(j) such that it equals one if Xi = Xj and zero otherwise (you would of

course have to rescale wi(j) by
∑

j wi(j) so that it summed to one for each i). If X is

continuous, then that particular measure won’t work, but there are several common choices

of distance measures. The most popular is probably “nearest-neighbor” matching. With

nearest-neighbor matching, wi(j) is a function of the Euclidean distance between Xi and Xj.

Specifically, wi(j) equals one for the control unit with the closest Xj to Xi – where closeness

is measured by Euclidean distance ((Xi −Xj)
′(Xi −Xj)) – and zero otherwise. Thus, wi(j)

selects the “nearest (control) neighbor” j to treated unit i, and τ̂M computes the mean

difference between each treated unit and its nearest control neighbor. This procedure should

produce valid causal estimates under the selection on observables assumption, assuming that

there is sufficient overlap between the treated and control groups (we will return to this issue

shortly).

Of course, the choice of units for each component of Xi is arbitrary, so it may not make

sense to weight each component equally when computing the distance between two points,

as the Euclidean distance metric does. A popular alternative to the Euclidean metric is

thus the Mahalanobis distance metric, (Xi −Xj)
′Σ−1x (Xi −Xj), where Σx is the covariance

matrix of X – note the parallel to GLS. Effectively, you are normalizing the components of

(Xi −Xj) by the root of the inverse covariance matrix.8

8The odd thing about Mahalanobis distance is that, depending on the covariance structure, you can end
up in situations in which (10, 10) is closer to (0, 0) than (8, 2). I believe this is because the weight in the
inverted covariance matrix can become negative.



M.L. Anderson, AGRODEP Impact Eval. Training III, June 2014 24

The main problem with matching is something known as the “Curse of Dimensionality.”

The problem is that the sparsity of the data rapidly increases with the dimension of X.

Thus, the more variables you have in X, the less likely you are to find a comparison control

unit lying close to any given treatment unit – there are simply too many dimensions to match

along. For example, supposed that X contains age, gender, race, education, income, height,

weight, and city of residence. Suppose that individual i is a 32 year old black female with 16

years of education, an income of $42,000, 1.63 meters in height, weighing 60 kg, and living in

a small town outside of London. It is unlikely that you will find another individual with those

identical attributes in your data unless you have a very, very large data set. From a technical

standpoint, this problem represents a failure of what we call the “overlap assumption.” The

overlap assumption posits that for any value of Xi that occurs in the data, we observe both

treated and control units with that value of Xi. Loosely speaking, the overlap assumption

implies that for every treated unit, we can find a “good” control unit, where the control unit

is “good” in the sense that it shares the exact same values of Xi as the treated unit.

So what can be done? To address the “Curse of Dimensionality,” statisticians developed

propensity score matching.

3.2 Propensity Score Methods

Assume that we have unconfoundedness: (Yi(0), Yi(1)) ⊥ Di|Xi. Also assume that the

overlap assumption holds: 0 < P (Di = 1|Xi) < 1. Combining these two assumptions, we

say that the treatment assignment is “strongly ignorable.” We know that if we condition

on Xi, then we can get a consistent estimate of ATE by simply comparing the difference in

means between treated and control units. In practice, however, it is hard to condition on Xi

if Xi is high dimensional. Note that this is effectively because the overlap assumption fails

in finite samples – for most observations, it is impossible to find a comparison unit with the

opposite treatment assignment and the same value of X.

An important result is that, under strongly ignorable treatment assignment, it is sufficient
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to condition simply on p(Xi) = E[Di|Xi], also known as the propensity score. Formally, if

we assume (Yi(0), Yi(1)) ⊥ Di|Xi, then

(Yi(0), Yi(1)) ⊥ Di | p(Xi)

Proof

We will show that P (Di = 1 | Yi(0), Yi(1), p(Xi)) = P (Di = 1 | p(Xi)) = p(Xi). This

implies independence of Di and (Yi(0), Yi(1)) after conditioning on p(Xi).

P (Di = 1 | Yi(0), Yi(1), p(Xi)) = E[Di | Yi(0), Yi(1), p(Xi)]

= E[E[Di | Yi(0), Yi(1), p(Xi), Xi] | Yi(0), Yi(1), p(Xi)]

= E[E[Di | Yi(0), Yi(1), Xi] | Yi(0), Yi(1), p(Xi)]

= E[E[Di | Xi] | Yi(0), Yi(1), p(Xi)]

= E[p(Xi) | Yi(0), Yi(1), p(Xi)]

= p(Xi)

For completeness, note that:

P (Di = 1 | p(Xi)) = E[Di | p(Xi)]

= E[E[Di | p(Xi), Xi] | p(Xi)]

= E[E[Di | Xi] | p(Xi)]

= E[p(Xi) | p(Xi)]
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= p(Xi)

So P (Di = 1 | Yi(0), Yi(1), p(Xi)) = p(Xi) = P (Di = 1 | p(Xi)). Since Di is binary, this

implies independence of Di and (Yi(0), Yi(1)) after conditioning on p(Xi). In other words, it

is sufficient to merely condition on p(Xi) – we don’t have to condition on Xi.

Why is it sufficient to condition on the propensity score? Our concern is that units select-

ing into treatment differ in some meaningful way from units that do not select into treatment,

and that this difference is consistently related to the probability of entering treatment. If,

however, we only compare units with the exact same probability of treatment, then it is im-

possible for the differences to be consistently related to the probability of treatment.9 After

conditioning on the propensity score, the units are “as good as randomly assigned.”

3.2.1 Estimating the Propensity Score

Before you can condition on the propensity score, p(Xi) = E[Di|Xi], you have to estimate it.

There are several ways to do this – it’s not clear that one method is uniformly superior, so

your choice may be context dependent. The easiest way is to use a flexible logit specification

(flexible in the sense that there are interactions between the various components of Xi). The

general rule of thumb here is to err on the side of being more flexible, i.e. including more

higher-order terms and interactions. There are other methods as well, but in general the

results are not highly sensitive to the specification of the propensity score.

3.2.2 Blocking on the Propensity Score

Once you’ve estimated the propensity score, the next question is what to do with it, i.e.

how to condition on it. A popular way to use the propensity score is to “block,” or stratify,

on the propensity score. That is to say, divide the range of the propensity score into K

blocks (Dehejia and Wahba use 20 blocks of width 0.05) and place observations in each

9If they were, then we would be using them to estimate the propensity score, or so our unconfoundedness
assumption claims.
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block according to their estimated propensity scores, p̂(Xi). Within each block k, compute,

τ̂k, the difference in means between treated and untreated observations. Finally, combine all

K treatment effect estimates as follows:

τ̂ =
K∑
k=1

τ̂k ·
N1k +N0k

N

In other words, the average treatment effect is a weighted sum of the block-level treatment

effects, with the each block’s weight equal to the number of observations contained in that

block. Choosing the number of blocks is at the researcher’s discretion. One popular algorithm

is to start with a given number of blocks (e.g., 10), and check whether the covariates are

balanced within each block. If they are not, then split the blocks and check again. Continue

until the covariates are balanced.10 If the covariates remain unbalanced within blocks even

when the propensity score is balanced, then you may need to estimate the propensity score

more flexibly.

The overlap assumption becomes prominent when blocking on the score. When a block

contains either zero treated units or zero control units, no estimate of the treatment effect

exists for that block, and it must be discarded. Furthermore, because the logit specification

forces 0 < p̂(Xi) < 1, it may appear that the overlap assumption is satisfied for all units

when in fact it is not. To be safe, one should discard all control units with p̂(Xi) less than

the minimum p̂(Xi) in the treated group and all treated units with a p̂(Xi) greater than the

maximum p̂(Xi) in the control group.11

Note that blocking on the score is analogous to matching on the score in that you are

only comparing observations with propensity scores that are close to one another. One could

formally implement a matching estimator, however, using one of the methods discussed in

10Note that if you have many covariates and many blocks, you should not expect 100% of the covariates to
have no significant relationship to the treatment status in every block - some coefficients should be significant
simply by chance. A more realistic target would be, for example, to find that only 10% of the covariates are
significantly related to treatment status at the 10% level.

11I am assuming that the minimum p̂(Xi) occurs in the control group and the maximum p̂(Xi) occurs in
the treated group. If not, perform the trimming so that the minimum p̂(Xi) is (virtually) the same for both
groups and the maximum p̂(Xi) is (virtually) the same for both groups.
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Section 3.1. Dehejia and Wahba, for example, use nearest-neighbor matching as an alter-

native estimator to blocking on the propensity score (both estimators give similar results in

most, but not all, cases).

3.2.3 Overlap

If you recall from the initial discussion on regression adjustment, we noted that “if the CEF is

highly non-linear, then [the regression’s] linear approximation may be very poor, particularly

in cases in which the regression must engage in substantial extrapolation because the treated

units have very different values of X than the control units.” This is another way of stating

that the “overlap assumption” does not hold, because for some values of Xi we only observe

treated units or we only observe control units (but not both). We have also seen that overlap

is important for matching (i.e., if you don’t have overlap of the covariates, then you can’t

find matches) and for the propensity score (if p(Xi) gets close to zero or one, then it becomes

hard to find matches if you are blocking or matching). The dominant theme is thus that the

estimation technique itself is probably not as important as:

1. Whether the unconfoundedness assumption holds.

2. Whether there is overlap in the treatment and control distributions of the covariates.

4 Real-world Evidence on Selection Bias

We have seen so far that:

1. it is almost always valid to run a regression as long as you interpret it correctly,

2. randomized experiments are generally the preferred method for estimating causal ef-

fects under the potential outcomes framework, and

3. absent an RCT, one might try to use a selection on observables design – regression,

matching, or propensity scores – to estimate a causal effect.
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Under what conditions will a linear regression – the bread and butter of econometrics –

or another selection on observables design approximate a randomized experiment? Loosely

speaking, we need it to be the case that Di is “as good as randomly assigned” after condi-

tioning on the available covariates Xi. How often does it hold up in practice? Not as often

as we would like.

4.1 LaLonde (1986): The NSW

LaLonde (1986) analyzes a randomized experiment evaluating a job training program, the

National Supported Work Demonstration (NSW). The NSW, operated by Manpower Demon-

stration Research Corporation (MDRC), “admitted into the program AFDC women, ex-drug

addicts, ex-criminal offenders, and high school dropouts of both sexes.”12 (LaLonde 1986, p.

605) While the NSW is shown to increase post-training earnings by $800-$900 (1982 dollars),

that is not the main focus of the article. Instead, LaLonde uses the experimental estimates

as a “benchmark” to test whether typical econometric techniques can reproduce the same

results. The short answer is that they cannot.

LaLonde needs a simulated control group in order to conduct his exercise – if he applies

any sensible estimator to the experimental data (treated and control groups), he will get

reasonable estimates because the treatment is randomly assigned. He therefore constructs

a series of simulated control groups using data from the Panel Study of Income Dynamics

(PSID) and the Current Population Survey (CPS) (merged with Social Security Adminis-

tration data). This is somewhat unusual in that the treated individuals and the control

individuals are drawn from two entirely separate data sets, but it is not unreasonable for his

purposes. LaLonde begins the benchmarking exercise by applying a series of differences-in-

differences type estimators. The basic model is:

(1) yi,1979 − yi,1975 = δDi + (εi,1979 − εi,1975)
12It is unclear from LaLonde’s description how the MDRC administrators chose which applicants would

enter the experiment. Given that there were only 6,616 trainees distributed between 10 cities, there was
presumably a scarcity of slots relative to potential applicants.
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This specification differences out any unobserved individual effects that are constant over

time – it is equivalent to including individual fixed effects in the cross-sectional regression.

Identification comes from comparing the change in earnings for those that participated in

training to the change in earnings for those that did not participate. LaLonde also supple-

ments this model with a regression that, instead of differencing, controls for pre-treatment

earnings. This specification is more flexible in that it does not restrict the coefficient on

pre-treatment earnings to be one.

(2) yi,1979 = δDi + βyi,1975 +Xiγ + εi,1979

Table 1 presents estimates from these two specifications. The “Pre-Treatment” column

presents differences between the income of treatment and control groups (or simulated control

groups) in 1975, before the training program starts. If the treatment is randomly assigned,

this difference should be close to zero, and for the true controls it is. LaLonde presents

eight simulated control groups – for brevity I present the two control groups per gender

that were closest to the experimental sample in terms of pre-treatment income. Table 1

is therefore more favorable to the nonexperimental estimates than LaLonde’s equivalent

tables. Nevertheless, we observe large variations between the experimental estimates and

the nonexperimental estimates.

The “Diffs-in-Diffs” column presents estimates using the first differences specification

presented above (equation 1). The experimental benchmarks are $833 for females and $847

for males. The nonexperimental estimates range from -$1,637 to $3,145, and in only one case

does the nonexperimental confidence interval contain the experimental point estimate. The

last two columns of Table 1 apply the model presented in equation 2 (first without additional

covariates, and then with additional covariates). These models perform slightly better – three

of the eight point estimates get reasonably close to the experimental benchmarks (one of them

gets quite close). Nevertheless, the pre-treatment differences are actually the worst for the

samples that produce the closest results, so there is no reason to believe that an objective

econometrician would reliably choose point estimates close to the experimental benchmarks.
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Table 1: One-Stage Estimates

Pre-Treatment Controlling For Fully
Estimator: Differences Diffs-in-Diffs Previous Earnings Adjusted
Females
Controls -17 833 843 854

(122) (323) (308) (312)
PSID-3 -77 3,145 3,070 2,919

(202) (557) (531) (592)
CPS-4 -1,189 2,126 1,222 827

(249) (654) (637) (814)

Males
Controls 39 847 897 662

(383) (560) (467) (506)
PSID-3 455 242 629 397

(539) (884) (757) (1,103)
CPS-3 337 -1,637 -1,396 1,466

(343) (631) (582) (984)

Notes: Standard errors in parentheses. Source: LaLonde (1986).

LaLonde then considers the performance of more advanced two-stage estimators. In

particular, he applies the Heckman selection correction model from Heckman (1978). The

Heckman selection correction models two equations separately: the participation equation

(the first stage, a non-linear probit model) and the earnings equation (the second stage).

In this sense it is not unlike two-stage least squares, but there are a couple key differences.

First, it uses a “control function” approach to solve the endogeneity problem. Specifically, it

uses estimates from the first stage equation as a regressor to control for the expected value

of the earnings residual conditional on participation and the determinants of participation.

Second, because it specifies the participation (treatment) dummy as a non-linear function

of the covariates, it is possible to identify the training coefficient without any instruments

(i.e., exclusion restrictions). Nevertheless, LaLonde experiments with several (questionable)

instruments to see how well this model performs.

The results from the Heckman two-step estimator are reported in Table 2. The Heckman

correction allows you to test the exogeneity of the treatment indicator by testing whether the
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Table 2: Two-Stage Estimates

Females Males
Training Participation Training Participation

Controls 861 284 889 -876
(318) (2,385) (840) (2,601)

5 Sketchy IVs 1,102 -606 -22 -1,437
(323) (480) (584) (449)

3 Sketchy IVs 1,256 -823
(405) (410)

2 Sketchy IVs 1,564 -552 13 -1,484
(604) (569) (584) (450)

No Instrument 1,747 -526 213 -1,364
(620) (568) (588) (452)

Notes: Standard errors in parentheses. Source: LaLonde (1986).

coefficient on the selection correction term in the second stage is significantly different than

zero. For brevity I present only results for the samples that displayed the least evidence of

selection into the treatment. The two-step estimators perform somewhat better than the one-

step estimators, but the results are still not encouraging. On the positive side, the confidence

intervals for all but one of the nonexperimental estimates contain the experimental point

estimates. But the standard errors are so large that much of this “encouraging” performance

is primarily due to the fact that the confidence intervals are huge. Male nonexperimental

estimates are particularly bad, ranging from -$1,333 to $213 (see LaLonde’s Table 6 for the

full set of results). It seems likely that if additional data were available, the nonexperimental

estimates would converge to different values than the experimental estimates.

When LaLonde’s paper was published in 1986, it caused significant consternation among

applied researchers trying to estimate causal effects. It is probably not an understatement

to say that it sparked the pursuit of clean, transparent research designs that continues to

this day.
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4.2 Arceneaux, Gerber, and Green: More recent evidence

Arceneaux, Gerber, and Green (2006) (henceforth AGG) perform an exercise similar to

LaLonde’s exercise using data from a large-scale voter mobilization effort (this type of effort

is often referred to as a “Get Out the Vote” campaign). In this effort, households are

randomly called and encouraged to vote. Although the calling assignment is random, whether

a household is actually contacted is non-random – people often do not answer their phones.

Regressing a household’s voting behavior on whether or not that household was contacted

can thus give biased estimates of the causal effect of encouragement on voting. One way to

correct for this bias is to use the original random calling assignment as an instrument for

actual contact/encouragement. This estimator will consistently estimate the causal effect of

encouragement on voting for households for whom the original calling assignment changed

whether or not they were contacted (i.e., households that actually got contacted). In this

case, that means that the instrumental variables estimator will estimate TOT, the effect of

the treatment (being contacted and encouraged) on the treated (those who were contacted

and encouraged). I refer to these estimates as the “experimental estimates.”

Alternatively, however, we could try to use a matching estimator to condition on the

observed covariates and, in that manner, estimate TOT. Specifically, we could find a match

for every treated unit, and compare the difference in voter participation for the treated

units and their matched pairs. We could then benchmark the results of this matching

estimator, which should be valid under the selection on observables assumption, against the

experimental estimates. This is exactly what AGG do.

The AGG data have at least one important advantage over the NSW data: the AGG

sample size is massive. There are approximately 60,000 treated individuals and almost two

million control individuals. All individuals (treated and control) were taken from voter

registration lists, which contain detailed information on voting histories and demographic

characteristics. Once included in the study, individuals were randomly assigned to treatment

or control groups. Obviously, most people (97%) were assigned to the control group.
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The first column of Table 3 reports experimental benchmark estimates (i.e., IV esti-

mates). These estimates suggest that voter encouragement raises the probability of voting

by approximately 0.3 to 0.5 percentage points. These estimates are precisely estimated and

are not significantly different than zero – voter encouragement appears to have no appreciable

effect on voting behavior, at least for this population.

Table 3: “Effect” of Voter Encouragement on Voting

Experimental OLS Matching
Sample w/o Unlisted No. 0.5 2.7 2.8

(0.4) (0.3) (0.3)
N 1,905,320 1,905,320 22,711

Sample w/ Unlisted No. 0.3 4.4 4.4
(0.5) (0.3) (0.3)

N 2,474,927 2,474,927 23,467

Source: Arceneaux, Gerber, and Green (2006). Parentheses contain
standard errors.

The second column of Table 3 reports OLS estimates that regress voting behavior on

whether an individual was contacted, conditioning on a variety of covariates. These covari-

ates include age, household size, gender, contest indicators, county indicators, and two years

of previous voting behavior.13 This is roughly comparable to LaLonde (1986), who has age,

education, marital status, gender, race, and two years of prior earnings. In particular, both

studies include two years worth of pre-treatment outcomes. The OLS estimates range from

2.7 to 4.4 and are highly significant (t-statistics of 9 to 14). These estimates imply that voter

encouragement raises the probability of voting by 2.7 to 4.4 percentage points. Clearly the

OLS estimates are biased – does this bias occur because of a lack of overlap in the covariates

between the treated and untreated groups?

The third column of Table 3 reports matching estimates that find an exact match in the

control group for each treated unit (this is possible because all covariates are discrete and

13Though AGG do not show the covariate balance across treated versus untreated individuals, there must
be substantial imbalance (i.e., covariates can predict whether an individual answers her phone) because
controlling for covariates has a strong effect on the OLS estimates.
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the control group is enormous). They are able to match about 91% of observations using

exact matches and 99.9% of observations using slightly less exact matches (e.g., coding age in

3 year intervals and dropping some geographic indicators). This means that close matches

can be found for virtually all observations, enabling an estimator that is almost entirely

non-parametric. Nevertheless, matching estimates range from 2.8 to 4.4 and are highly

significant. Matching therefore does not appear to solve the selection bias problem, even

with excellent overlap in the covariate distributions of the treated and control observations.

4.3 Shadish, Clark, and Steiner: Some Balance

Shadish, Clark, Steiner (2008) raise a somewhat different, but important, issue with LaLonde’s

NSW paper (and others like it). Their complaint is that LaLonde’s NSW exercise confounds

the assignment mechanism (random assignment versus observational data) with other fac-

tors – for example, sites, times, variable measurements, missing outcome data, etc. The

core of Shadish, Clark, and Steiner’s (henceforth SCS) argument is that the randomly as-

signed “experimental” control units come from one data set – the NSW data – while the

non-randomly assigned “observational” control units come from other data sets – CPS and

PSID. Thus it is possible that factors specific to the different data sets may be contributing

to the observed differences in the estimates generated by using the CPS/PSID controls in-

stead of using the experimental NSW controls. Simply put, LaLonde’s study of confounding

in the context of observational data may itself by confounded by other factors that correlate

with the assignment mechanism.

SCS’s response is, naturally, to randomly assign the assignment mechanism. Their study

proceeds in three basic steps. First, they recruit students as test subjects. Next, they

randomly assign students to either have a treatment randomly assigned to them or to be given

a choice about which treatment they would like. In the random assignment arm, students are

randomly assigned to either math training or vocabulary training. In the choice arm, students

either choose math training or vocabulary training. In all cases students are tested on math

and vocabulary after completing the training. Finally, SCS estimate the “effects” of training
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in the choice arm using various selection on observable techniques (regression adjustment and

several propensity score methods). These estimates adjust for a rich set of covariates that

SCS collect from the students: sex, age, marital status, race, pretreatment vocabulary and

math scores, number of math courses taken, stated preferences regarding math and literature,

a personality measure, parental education, math intensity of major, ACT (standardized

test) scores, and GPAs. The outcome of interest is the difference between a student’s post-

training math performance and her post-training vocabulary performance (or vice versa).

SCS compare these estimates to the “true” effects of training that they estimate using the

data from the random assignment arm. This is similar in spirit to LaLonde’s exercise, but

SCS can be confident that no other factors are correlated with whether a student ends up

in the random assignment arm or the choice arm.

SCS present their results in Table 1 of their paper (p. 1338). I summarize the notable

patterns from their results here. First, students randomly assigned to math training do bet-

ter at math relative to vocabulary, and students randomly assigned to vocabulary training

do better at vocabulary relative to math. Second, selection bias turns out to be modest in

this experiment. The unadjusted estimate in the non-randomly assigned data is only 25%

higher than the true treatment effect (from the randomly assigned data) for math. It is only

9% higher than the true treatment effect for vocabulary. Third, of the various selection on

observables designs that SCS implement, OLS (aka “ANCOVA”) does as well or better than

anything else. Regression adjustment (OLS) achieves an 84% bias reduction in the math

estimate using non-randomly assigned data and a 94% bias reduction in the vocabulary es-

timate using non-randomly assigned data. Among the propensity score methods, SCS use

blocking, including the propensity score as a regressor, and weighting. They also implement

some “doubly robust” methods. Blocking works well for both math and vocabulary, but

weighting only works well in the vocabulary case. Including the propensity score as a re-

gressor results in less bias reduction than just controlling directly for the covariates that go

into the score.

The most interesting part of SCS’s study is that they also try propensity score blocking
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using only “predictors of convenience” – sex, age, marital status, and race. This purposely

omits a lot of rich covariates that they have at their disposal, and it simulates a scenario in

which a researcher has limited controls available in the data. Propensity score methods that

only use predictors of convenience do much worse than propensity score methods (or simple

linear regressions) that use the full set of predictors – bias reduction is in the range of only

0% to 40%. Thus SCS provide evidence that if you have a rich set of relevant covariates,

you may get decent estimates using non-experimental data. However, in most cases it will

be difficult to say when you have a sufficiently rich set of covariates!

4.4 Summary

The LaLonde NSW study demonstrates that conventional econometric techniques may be

insufficient to solve the selection bias problem in a typical program evaluation scenario (when

not using randomized treatment assignments). The AGG experiment further demonstrates

that even in cases that seem well-suited to the selection on observables design, estimates

can be biased pretty badly. The main problem that AGG face (or would face, if they didn’t

have the experimental estimates) is that it’s hard to make the case that they observe all

of the important factors in determining whether a caller makes contact with an individual

or whether an individual turns out to vote. Of course, one could say the same thing about

almost any dataset with observational (i.e., not randomly assigned) data, so it’s difficult for

the real-world econometrician to determine when the selection on observables design does or

does not hold.14 The SCS conclusions are somewhat more optimistic than AGG, but again

it’s hard to know when you have observed “enough” selection factors. An alternative to the

selection on observables design is, of course, the selection on unobservables design. The next

section of the course focuses on this category of research designs.

14My personal belief is that it’s most plausible when the selection was performed by an individual or body
that has observes the same data that is available to the researcher – e.g., a college admissions officer who
does not conduct interviews or read long personal essays. In cases in which units are self-selecting (which to
be honest is most cases), it’s far less plausible.
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4.5 Freedman (1991): A Natural Experiment

Freedman (1991) offers a critique of linear regression applications along with an example of

an historical natural experiment as an alternative research design. Freedman begins with four

possible views of regression, progressing from the most optimistic to the most pessimistic:

(1) Regression usually works, although it is (like anything else) imperfect and

may sometimes go wrong.

(2) Regression sometimes works in the hands of skillful practitioners, but it isn’t

suitable for routine use.

(3) Regression might work, but hasn’t yet.

(4) Regression can’t work.

Source: Freedman (1991), p. 292.

Freedman professes that his own view falls between (2) and (3). I’m not sure exactly

what (3) entails – the properties of linear regression are pretty well-established, so if it were

going to work, I would think it would have done so by now. But, like Freedman, I agree that

“good examples [of causal estimates from regression] are quite hard to find.”

In contrast to regression models (and more sophisticated models, like matching or propen-

sity score methods), Freedman presents the work of John Snow on cholera in the 1850s (that

is to say, Snow conducted the work during the 1850s, on cholera at that time). Snow pos-

tulated that unsanitary water caused cholera outbreaks (at the time it was believed that

cholera arose from poisonous particles in the air). Snow had several pieces of circumstantial

evidence to support his position, but in order to prove his hypothesis he observed that water

distribution in London gave rise to a natural experiment.

In the area that Snow was studying, two water supply companies, Southwark and Vaux-

hall Company and Lambeth Company, competed for customers. One company (Lambeth)

drew water upstream of the sewage discharge points in the River Thames, while the other
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(Southwark and Vauxhall) drew water downstream of the discharge points. Both companies

had pipes running down virtually every street and alley, and which houses chose which com-

pany appeared to be virtually random. Snow wrote, “Each company supplies both rich and

poor, both large houses and small; there is no difference either in the condition or occupa-

tion of the persons receiving the water of the different Companies.” In today’s terminology,

Snow would say that the observable attributes (covariates) were balanced across the two

companies. Having convinced himself that the choice of water company was nearly random,

he examined the cholera death rate for customers of both companies.

The cholera results, presented in Table 4, are striking. Death rates for the downstream

company are over eight times higher than death rates for the upstream company. Given the

sample size, and the fact that the customers of both companies are spatially intermixed, it

is clear that these results are highly significant despite the absence of standard errors. As

Freedman writes (p. 298):

As a piece of statistical technology, Table [4] is by no means remarkable. But the

story it tells is very persuasive. The force of the argument results from the clarity

of the prior reasoning, the bringing together of many different lines of evidence,

and the amount of shoe leather Snow was willing to use to get the data.

Table 4: Snow’s Table IX
Number of Deaths from Deaths per

Houses Cholera 10,000 Houses
Southwark and Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59

Notes: Source: Freedman (1991).

Freedman’s emphasis is that the findings’ credibility is due to the persuasive research

design in conjunction with an impressive data set, rather than the sophistication of the

statistical modeling technique. The implication is that, if you can’t get data that have some

sort of clean (i.e., as good as randomly assigned) variation in the treatment of interest, then
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you can’t convincingly identify a causal effect, no matter how fancy an estimation technique

or theoretical model you apply. My personal view is in line with Freedman’s, but it is

certainly a matter considered open for debate within economics/econometrics. Regardless,

as a piece of empirical evidence, Snow’s 150-year-old study is clearly more credible than the

vast majority of articles published today in economics (or other social sciences).

With this motivation in mind, we begin our discussion of “selection on unobservables”

research designs. Virtually all of these techniques have historical roots that precede the

LaLonde (1986) paper by years, if not decades. Nevertheless, their increased popularity is

likely in part a reaction to LaLonde’s study.

5 Panel Data and Differences-in-Differences

Panel, or longitudinal, data sets consist of repeated observations for the same political ju-

risdictions, firms, individuals, or other economic agents. Typically the observations are at

different points in time. The most common research design for policy analysis with panel data

is the differences-in-differences model. In its simplest incarnation, the diffs-in-diffs model en-

tails identifying two cross-sectional units (states, cities, countries, etc.), one of which was

exposed to a policy change (or some other treatment) and the other of which was not. With

longitudinal data, we collect information on the two units both before the policy change and

after the policy change. To estimate the effect of the policy on a given outcome, we simply

compare the change in the outcome for the treated unit to the change in the outcome for

the control unit.

5.1 Differences-in-Differences

Suppose that we observe two states, s = 0 and s = 1, one of which is affected by a policy

change and the other of which was not. Further suppose that we observe these states for two

time periods, t = 0 (pre-policy change) and t = 1 (post-policy change). Formally, for some

outcome Yist that we observe at the individual level, the differences-in-differences estimator
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is

(Y 11 − Y 10)− (Y 01 − Y 00)

where Y st = 1
Nst

∑
i Yist. To examine the strengths and weaknesses of this estimator,

write Yist = Y + τDst + γs + δt + εst + uist. Note that the inclusion of εst guarantees that

ust = 0.

(Y 11 − Y 10)− (Y 01 − Y 00) =

[(Y + τ + γ1 + δ1 + ε11)− (Y + γ1 + δ0 + ε10)]− [(Y + γ0 + δ1 + ε01)− (Y + γ0 + δ0 + ε00)] =

(τ + δ1 − δ0 + ε11 − ε10)− (δ1 − δ0 + ε01 − ε00) =

τ + (ε11 − ε10)− (ε01 − ε00)

The key assumption for identifying τ will therefore be E[ε11 − ε10] = E[ε01 − ε00]. In

other words, the outcomes for the two states must have similar trajectories over the two

time periods absent any treatment effect. Any factor that is specific to state s but does

not change over time, or changes over time but changes in equal amount for both states, is

netted out in the diffs-in-diffs estimator.

It is important to note, however, that the condition above only guarantees that we will

identify τ in expectation. Because we only observe a single observation for each of the εst

terms in the expression above, there is no guarantee that the noise from εst will not swamp

our estimate of the treatment effect, τ – we cannot appeal to the law of large numbers as we

do when we have N independent observations.

The diffs-in-diffs estimator can also be easily implemented within a regression framework.

Consider running the regression:

Yist = α + τDst + γ1(s = 1) + δ1(t = 1) + εst + uist
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In other words, simply regress Y on a treatment indicator, a state dummy, and a time

dummy. The state dummy controls for between-state differences in Y that are constant over

time, and the time dummy controls for between-time period differences in Y that are identical

across states. Identification of τ again comes from the assumption that εst is uncorrelated

with the treatment indicator (which is equal to the interaction between the state dummy

and the time dummy) conditional on the state dummy and the time dummy. Note that in

the regression format, it is easy to control for individual-level covariates. You can also see

the standard errors issue in this framework. If we use the typical OLS standard errors that

assume independence across all observations, we are effectively claiming that the only error

in our estimator is sampling error that arises because we do not observe the entire population

of each state. However, if σ2
ε 6= 0, i.e. there are state-specific shocks that vary over time,

then this independence assumption is violated, and our standard errors will be wrong.

The key identifying assumption in differences-in-differences is that E[ε11−ε10] = E[ε01−

ε00]. This is often referred to as the “parallel trends assumption,” because it implies that the

outcome followed similar (parallel) trends in both states prior to the policy intervention, and

more importantly that, absent the policy intervention, it would have continued to follow the

same trends following the intervention date. Returning to the notation of the Rubin Causal

Model, the parallel trends assumption implies that E[Ys1(0) − Ys0(0)] is identical for both

states; the potential outcome under no treatment changes similarly in both states.

Like all identifying assumptions, the parallel trends assumption is impossible to defini-

tively test. Nevertheless, we can often provide suggestive evidence that it holds by plotting

the outcome for treated and control states prior to the policy intervention. If the parallel

trends assumption holds, then the outcome’s time series for the control state should follow

a similar trend to the outcome’s time series for the treated state prior to the intervention.

If the trends are not similar – for example, if the outcome is moving upwards for the treated

state but moving downwards for the control state – then this implies that the control state

does not provide a good counterfactual for the treated state, and the differences-in-differences

design is suspect.
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5.2 Triple Differences

A diffs-in-diffs research design can sometimes be made more compelling by adding another

layer of differencing to the estimator, resulting in a triple-diffs estimator. For example,

consider a policy change in state 1 in time period 1 that only affects persons 65 years and

older. In that case, we might use individuals aged 55-64 as an additional “control” group.

In practice, we would implement this with a triple differences estimator. Let Y sta be defined

as above, but with a = 0 signifying persons of age 55-64 and a = 1 signifying persons of age

65 and older. Then the triple differences estimator is:

[(Y 111 − Y 110)− (Y 101 − Y 100)]− [(Y 011 − Y 010)− (Y 001 − Y 000)]

In other words, we compare the evolution of the gap between 65+ year olds and 55-64

year olds in the treated state to the evolution of the gap between 65+ year olds and 55-64

year olds in the control state. The advantage of this triple-diffs structure is that it allows us

to relax our assumptions on εst. We no longer need to assume that outcomes for both states

would evolve similarly in expectation – we now need only assume that, to the extent that

outcomes evolve differently in state s = 1 than state s = 0, the differences affect age groups

a = 1 and a = 0 similarly.

We can easily implement this triple-diffs estimator within the regression framework. The

key is to put in an indicator for every main effect or interaction up to, but not including, the

level at which the treatment varies. Thus we include main effects for age, state, and time,

as well as all possible two-way interactions between each of those indicators. The regression

looks like:

Yista = α + τDsta + γ11(s = 1) + γ21(t = 1) + γ31(a = 1) + γ41(s = 1)1(t = 1)

+γ51(s = 1)1(a = 1) + γ61(t = 1)1(a = 1) + εsta + uista
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5.3 Applications: Card (1990), Ashenfelter & Greenstone (2004),
and Kellogg & Wolff (2008)

A canonical example of a diffs-in-diffs papers is Card’s (1990) study of the Mariel Boatlift.15

The Mariel Boatlift occurred from May to September of 1980 when Cuba allowed any citizen

wishing to emigrate to the United States free passage from the port of Mariel. Approximately

125,000 Cuban immigrants arrived in Miami during this time period, increasing the local

labor force by about 7%.

Card examines wage and employment outcomes for various groups of natives, particularly

blacks and lower-skilled workers – the latter group is more likely to be in direct competition

with the newly arrived immigrants (who were relatively low-skilled). He compares the evo-

lution of these outcomes over the 1979 to 1981 period in Miami to their evolution in four

comparison cities: Atlanta, Los Angeles, Houston, and Tampa-St. Petersburg. For blacks,

the difference in log wages between Miami and comparison cities changes from −0.15 in

1979 to −0.11 in 1981, so the diffs-in-diffs estimate for log wages is 0.04 (with a standard

error of about the same size). The difference in the employment-to-population ratio between

Miami and comparison cities changes from 0.00 in 1979 to 0.02 in 1981, so the diffs-in-diffs

estimate for employment is 0.02. Estimates for unemployment rates and low-skilled blacks

show similar patterns. Overall, there is no evidence that immigrants harm natives’ labor

market outcomes.16

Ashenfelter and Greenstone (AG) use a combination of diffs-in-diffs and triple differences

designs to estimate the effect of speed limits on highway fatalities. They leverage a “natural

15The term “differences-in-differences” is thrown around often, but to my knowledge there is no formal
definition for what classifies as a “diffs-in-diffs” paper. Arguably many panel data papers that control
for both individual-specific effects and aggregate time effects are using some form of double differencing
estimator, but that doesn’t mean that we’d necessarily refer to them as diffs-in-diffs papers. In my mind, a
diffs-in-diffs paper generally uses some sort of variation in the treatment that occurs at an aggregated level,
e.g. the city or state level. We therefore tend not to worry so much about individuals selecting into the
treatment (it’s unlikely that most will move in response to just one shock), but rather we worry that the
treatment was implemented in one area rather than another for some non-random reason (e.g., legislative
endogeneity).

16Interestingly, for Americans of Cuban descent, Card finds evidence of some increase in unemployment
rates, but no effect on wages.
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experiment” that occurred when the Federal government permitted states to raise rural (but

not urban) Interstate highway speed limits to 65 mph (from 55 mph) in 1987. The ultimate

goal of the paper is to estimate the value of a statistical life (VSL) based on the idea that

states that adopted higher speed limits must value the time savings more than the lives lost

from higher speeds. However, here we focus mainly on the fatality effects of higher speed

limits.

As a response to the energy crisis in the early 1970s, the US Federal government enacted

a 55 mph limit in 1974. The intent of this law was to reduce gasoline consumption (cars are

more efficient at 55 mph than 65 mph), but an unintended effect of this law was an apparent

decline in traffic fatalities. In 1987, the 55 mph speed limit was partially rescinded, and

states were allowed 65 mph on rural Interstates only. Not all states chose to raise speed

limits, however, which enables a diffs-in-diffs strategy: AG compare changes in fatalities for

states that increased their speed limits in 1987 with changes in fatalities for states that did

not.

However, one problem when examining the map of states that changed speed limits is that

there is strong geographic clustering in the policy variable –almost everyone changed their

speed limits except Northeastern states. Thus we may confound changes in fatalities from

speed limits with differing geographic trends in fatalities across regions. AG thus augment

their design with a triple-diffs strategy. Urban Interstates are unaffected by the speed limit

change, even in treated states. We can thus compare how the rural/urban fatality rate

difference changes for treated states versus untreated states.

In practice, AG estimate rural and urban Interstate effects separately. Write the rural

effect estimate as (YT1R − YT0R) − (YC1R − YC0R) and the urban effect estimate as (YT1U −

YT0U) − (YC1U − YC0U). This strategy allows AG to test for differing geographic trends in

fatalities, as long as those differing trends affect both the rural fatality rate and the urban

fatality rate in an equal manner. They also examine rural arterial roads, which are another

group of roads on which the speed limit should not change, even in the treated states.
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Using a diffs-in-diffs strategy, AG find an average effect of speed limit increases on rural

Interstates fatalities of +36% (t = 4). The same strategy estimates an average effect of

speed limit increases on urban Interstate fatalities of -6% (t = 1), and an average effect on

rural arterial fatalities of +8% (t = 2). We expect an effect in the first case but not in the

latter two, because speed limits do not change on urban Interstates or rural arterial roads.

The fact that the estimates are much smaller and insignificant (or close to insignificant) for

urban Interstates and rural arterial roads is thus reassuring. If we found large effects on

these roads, it would imply that the parallel trends assumption is violated.

Kellogg and Wolff (2008) provide another nice example of a triple differences research

design. Their interest is in estimating the effect of Daylight Savings Time (DST) on electricity

usage. DST may reduce energy usage because, for example, it aligns the hours at which

people are awake with the hours at which the sun is up, thus reducing lighting needs. On

the other hand, it may increase energy usage because people wake up when the sun rises (as

opposed to after it has risen) and need to heat their homes during this time.

Kellogg and Wolff leverage an extension to DST in Australia that was put in place for

the Summer 2000 Olympics. Some Australian states, including New South Wales (where

the Olympics were held) and Victoria, extended DST beyond the date at which normally

terminates. Other states, including South Australia, did not. They compare the change in

electricity usage for Victoria (the “treated” state) to the change in electricity usage for South

Australia (the “control” state). They are concerned, however, that electricity usage might

be trending differently in these two states for reasons unrelated to the DST extension.

To address this concern, they observe that DST should not affect electricity usage during

the middle of the day, when the sun is always in the sky regardless of whether you are

on DST or standard time. The midday hours thus provide an extra “control” group that

should be unaffected by DST. This allows them to implement a triple differences estimator.

Specifically, they define the treated portion of the day as the hours from 0:00 to 12:00 and

14:30 to 24:00. They define the control portion of the day as the hours from 12:00 to 14:30.
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Using a simple differences-in-differences estimator with electricity usage during the treated

portion of the day as the outcome, they find that electricity usage fell by 0.4% in Victoria

as compared to South Australia. However, they also find that electricity usage during the

control portion of the day fell by 0.2% in Victoria as compared to South Australia. The triple

differences estimator takes the difference between these two double differences estimators;

thus their final estimate is that DST reduced electricity usage by 0.2% (with a standard

error of 1.5%). The identifying assumption here is that, if Victoria and South Australia are

trending differently from each other, these differential trends still have the same proportional

effect on electricity usage from 12:00-14:30 and electricity usage from 0:00-12:00/14:30-24:00.

To increase the precision of their estimates, they also implement the triple differences

estimator in a regression framework. The regression framework allows them to control for

other determinants of electricity usage (e.g., day of week, weather, etc.). This reduces the

unexplained variation in the outcome and thus reduces their standard errors. An observation

in this regression is the half-hour-by-day-by-state. They regress electricity usage on the

treatment variable (one if DST is in effect and it is before 12:00 or after 14:30, zero otherwise)

and day-by-state indicators (which basically correspond to the state-by-time interactions

in Section 5.2), hour-by-state indicators (which basically correspond to the state-by-age

interactions in Section 5.2), hour-by-year indicators (which basically correspond to the time-

by-age interactions in Section 5.2), and other control variables.

In the regression framework, they find that DST increases energy usage by 0.02% (if

they impose a homogeneous effect across all treated hours) or 0.09% (if they allow for het-

erogeneous effects of DST across different times of day). The standard error drops to 0.4%,

so they are able to rule out substantial electricity savings from DST – savings of 0.5% or

higher, for example, are unlikely.
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6 Instrumental Variables

Instrumental variables (IV) methods are a cornerstone of econometrics – these methods date

back to the work of Tinbergen and Haavelmo in the 1930s and 1940s. Our understanding of

IV methods advanced significantly during the 1990s, however, with seminal work on IV in

the context of treatment effect heterogeneity and IV methods in the case of a large number

of weak instruments. For the purposes of these notes, I will use the phrase “IV methods” to

refer generally to methods using instrumental variables, including IV, two stage least squares

(2SLS), and limited information maximum likelihood (LIML). Also, several other popular

estimators – in particular, regression discontinuity (RD) – are in fact special cases of IV.

6.1 Basic IV

Consider a model of the form

yi = β0 + β1di + εi (1)

I will sometimes refer to this equation as the “structural equation.” At this point we are

not assuming that di is binary – it may have more than two points of support, or it may

be continuous. The standard condition that we need for a linear regression of yi on di to

consistently estimate β1 is Cov(di, εi) = 0. This will be true if di is randomly assigned, and

it could be true in other situations as well. In general, however, it will not be true.

An alternative way to estimate β1 is via instrumental variables. The goal in IV is to find

some subset of the variation in di, call it zi, that is uncorrelated with εi (i.e., as good as

randomly assigned). Formally, our goal is to find an instrument zi, not in equation (1), that

satisfies the following two properties:

1. Cov(zi, di) 6= 0

2. Cov(zi, εi) = 0
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The first assumption ensures that zi actually captures some of the variation in di. If

it doesn’t, then it will be of no use to us in estimating the effect of di on yi. The second

assumption ensures that zi is uncorrelated with εi (obviously). This assumption is often

referred to as the “exclusion restriction” because it implies that the instrument, zi, can be

excluded from equation (1). If zi were correlated with εi, we would want to include it as a

covariate (given that it’s also correlated with di by our first assumption). This would violate

our condition that zi not be in equation (1).

To fix ideas, let us consider an application from Angrist (1990). Suppose that we would

like to estimate the causal effect of military service on earnings. One way to estimate this

effect would be to regress earnings on a military service indicator and a bunch of other

covariates. Is it plausible that the variation in service is uncorrelated with everything else

that affects earnings, such as unobserved ability? Probably not, even after conditioning on

covariates. We generally think that on average people who go into the army are different in

fundamental ways from people who do not, and specifically we believe that the two groups

are likely different in ways that affect earnings.

An alternative way to estimate the effect of military service on earnings is to find an

instrument for service that satisfies the criteria above. Angrist uses the Vietnam draft

lottery as an instrument for military service. During the Vietnam War the military needed

a “fair” way to determine which young men got drafted, so they held a lottery in which

men were assigned to be drafted in a certain order based on their birthdays. The lottery

determined men with certain birthdays to be “draft eligible,” and other men to be draft

ineligible. Draft eligible men might be drafted (depending on manpower needs), but draft

ineligible men would not be.

If we let zi be a dummy variable that is 1 if a man is draft eligible (based on the lottery

results) and 0 otherwise, then zi is a promising instrument for service. We know that the

first condition, Cov(zi, di) 6= 0, will be satisfied because men who are draft eligible will be

more likely to serve than those who don’t, inducing a positive correlation between zi and di.

We also know that the second condition for a good instrument, Cov(zi, εi) = 0, is likely to
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be satisfied because draft eligibility was randomly determined by the lottery. By definition,

no characteristic, other than those characteristics directly affected by draft eligibility, can

possibly be correlated with eligibility.

The IV estimator is:

β̂IV = (Z ′D)−1(Z ′Y )

In the general case, Z could contain not only the instrument zi (draft eligibility), but also

predetermined covariates xi (gender, race, parental education, etc.). D would then contain

both the treatment of interest, di, and the predetermined covariates xi. In the case in which

there are no covariates, we can write β̂IV = Cov(zi, yi)/Cov(zi, di).

It is straightforward to show that β̂IV is a consistent estimator of β1 given the assumptions

above.

plim(β̂IV ) = plim[(Z ′D)−1(Z ′Y )]

= plim[(Z ′D)−1(Z ′Dβ + Z ′ε)]

= plim[(Z ′D)−1(Z ′D)β] + plim[
1

N
(Z ′D)−1]plim[

1

N
(Z ′ε)]

= β

This formal derivation, however, gives limited intuition regarding why or how IV operates.

For intuition, we will turn to alternative methods of implementing the IV estimator.

6.2 The Reduced Forms and 2SLS

The most popular way to implement the IV estimator is via a two stage procedure known

as two stage least squares (2SLS). If we have one instrument and one variable that we want
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to instrument for, 2SLS and IV are the exact same thing (in this case we would say that we

are “exactly identified”). IV is thus a special case of 2SLS – you can always use 2SLS in any

scenario in which you can use IV, though the reverse is not true. We begin by writing out

the two stages of 2SLS, and then consider what is going on:

1. First Stage We first estimate a regression of di (the variable that we want to instrument

for – e.g., military service, in our hypothetical example) on the instrument, zi (e.g.,

the lottery number), and all of the predetermined covariates, xi. This regression looks

like:

di = γ1zi + xiγ2 + ui

where zi and γ1 are scalars, xi is a 1 ×K + 1 vector that includes all covariates and

a 1, and ui is a residual term. Take the predicted values of di (e.g., predicted military

service, d̂i = γ̂1zi+xiγ̂2) from this regression and use them in place of the actual values

of di in the second stage.

2. Second Stage In the second stage, we run the regression that we originally wanted to

estimate, but instead of including the variable that we want to instrument for (di),

we include its predicted values from the first stage (d̂i). In our example, instead of

running earnings on service and other covariates, we would run earnings on predicted

service (from the first stage) and other covariates. Thus the regression looks like:

yi = β0 + β1d̂i + xiβ2 + εi

The estimate of β1 from this regression will be consistent.

Note that both the first and second stages always contain the same set of covariates

(you can’t exclude certain covariates from the first stage and then include them in the

second stage, and you can’t exclude covariates from the second stage and include them in

the first stage, unless you intend to use them as instruments). In matrices, define Z to
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be a matrix that includes the instrument (zi) and the predetermined covariates (xi). D

is a matrix that includes the treatment (di) and the predetermined covariates (xi). Then

β̂2SLS = (D′PZD)−1(D′PZY ), where PZ = Z(Z ′Z)−1Z ′.

Now that we have introduced the first stage and the second stage, we are almost done, but

before we move on to the next section I will introduce the reduced form equation. Technically

the term “reduced form” refers to any regression which regresses an endogenous variable (i.e.,

a not-exogenous variable; in our case yi and di are our two endogenous variables) on all of

the exogenous variables (zi and xi). So, if you consider the two regressions that we estimated

above, you will see that the first stage is in fact a reduced form equation. However, in general

I will use the term “reduced form” to refer specifically to the reduced form equation that

regresses yi on all of the exogenous variables (zi and xi). So the reduced form in our example

is:

yi = π1zi + xiπ2 + vi

What does the reduced form measure? The reduced form measures the causal effect of

the instrument (zi) on the outcome variable (yi). In our example, the coefficient that we get

from running the reduced form gives us an estimate of the effect on earnings of winning the

scholarship lottery. Note that if zi is a good instrument, then the causal effect should run

only through the variable that is being instrumented for (di). In our example, that means

that becoming draft eligible should affect your income only because it makes it more likely

that you’ll serve, not for some other reason (e.g., because the draft eligible individuals flee

to Canada to avoid going to Vietnam).

So there are three equations we want to keep in mind:

1. The first stage, which regresses the variable we’re instrumenting for on the instru-

ment(s) and the other exogenous variables. This predicts how the variable we’re in-

strumenting for changes as our instrument changes.
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2. The second stage, which regresses yi on the predicted values from the first stage and

the other exogenous variables. This gives us our IV estimate of β1.

3. The reduced form, which regresses yi on the instrument and the other exogenous vari-

ables. This measures how yi changes as we change our instrument zi. Note that we

never have to run the reduced form in the 2SLS procedure, but as you will see in the

next section, it is a useful concept to keep in mind.

6.3 IV Intuition

At this point, some might ask, “Why not just run the reduced form? Why bother with

IV (2SLS) at all? After all, the reduced form gives unbiased predictions, and it’s much less

complex than this two stage procedure.” In other words, why not simply replace the variable

we want to instrument for (di) with the instrument (zi)? Actually, this isn’t necessarily a

bad idea. As Josh Angrist (a former advisor of mine, and an author of the Mostly Harmless

Econometrics textbook) says, “Many papers would do well to stop with the reduced form.”

The reduced form makes explicit exactly where the identification in the research design is

coming from, and it does not suffer from some of the “weak instruments” issues that we will

discuss later. Any time you are dealing with a single instrument, it’s a good idea to estimate

the reduced form and check whether it conforms to your expectations, even if you don’t put

it into the paper.

The answer to the question above, however, is that we usually are not interested in

measuring the effect of zi on yi, which is what the reduced form gives us. Instead, we are

interested in measuring the effect of di on yi. That is what IV gives us. In our example, we

are interested in measuring the effect of military service on wages, so we run IV. If we just

ran the reduced form, we would get the effect of becoming draft eligible on wages. While

that may be of some policy interest in evaluating the draft lottery, it is not what we are

looking for.

From a linear algebra perspective, 2SLS/IV estimates β by first projecting all of the data
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onto the subspace spanned by Z – all of the exogenous variables in the regression (i.e., the

instrument and the predetermined covariates) – and then running the regression of yi on di

and xi after they have been projected onto this subspace. In this sense it should be clear

that we are only using the “good” variation in di (i.e., the variation in di that comes from

zi) to estimate β1. However, in the case in which you have a single instrument (which is all

we have discussed so far), there is an even cleaner interpretation.17

In the case of one treatment and one instrument, the estimate of β1 that we get from IV

equals the reduced form coefficient rescaled by the first stage coefficient. That is to say:

β̂1IV =
π̂1
γ̂1

What this shows is that the IV estimate is very closely related to the reduced form

estimate – in fact, it’s exactly proportional to the reduced form estimate. Why is this a

useful formulation? Well, consider what each coefficient means.

In our example, the reduced form coefficient (π̂1) measures the effect of becoming draft

eligible on earnings. But that is not what we want; what we want is the effect of military

service on earnings. Because the draft lottery only affects earnings due to its effect on

increasing the probability of service (or so we’re assuming), the reduced form coefficient

represents the effect of an unknown change in the probability of service. The problem is that

we don’t have the units right. If we knew that everyone who was draft eligible served, and

that everyone who was not draft eligible did not serve, then we could interpret the reduced

form coefficient as the causal effect of military service on earnings. Why? Well, remember

that because the instrument zi is randomly assigned (i.e. draft eligibility is randomly picked),

the eligible and non-eligible are on average comparable in every way except that the eligible

serve and the non-eligible do not. So any difference in earnings between the eligible (i.e.

those with zi = 1) and the non-eligible (i.e. those with zi = 0) must be due to service. Thus

17If you are “overidentified,” i.e. you have more instruments than you need, then this interpretation does
not hold anymore, though it is still conceptually useful. In our example, we are “just identified” (one variable
to instrument for, i.e. service, and one instrument, i.e. the draft lottery), so you can apply the interpretation
that I’m about to give.
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the coefficient on zi in the reduced form (π̂1) is the effect of military service on earnings.

In general, however, it is unlikely that the draft eligibility is the only determinant of

military service. Some people volunteer to serve, for example. So how do we rescale the

reduced form coefficient so that we get the units right? The answer is that we divide through

by the first stage coefficient, γ̂1. Why does this work? Consider our specific example. The

first stage estimates the effect of draft eligibility on the probability of military service. So the

first stage coefficient, γ̂1, tells you how much, on average, your chance of serving increases if

you become draft eligible. So suppose that γ̂1 = 0.1 , i.e. that those who are draft eligible

are 10 percentage points more likely to serve than those who are not eligible. Also suppose

that π̂1 = −500, i.e., those who are draft eligible earn $500 less per year on average than

those who do are not draft eligible. Then we know that the people who are draft eligible

are earning $500 less because they are more likely to serve (this comes from the reduced

form). And we know that they are on average 10 percentage points more likely to serve.

So what is the effect of service? It is −$500/0.1 (the change in earnings divided by the

change in the probability of service), or $5000. In other words, our estimate of the effect of

service on earnings is β̂IV = π̂1
γ̂1

. So the reduced form coefficient represents the causal effect

of some additional probability of service on earnings (how much additional probability is

unknown until we see the first stage), and the first stage coefficient rescales that coefficient

appropriately to reflect the change in the probability of service that the instrument (draft

eligibility) generates.

So far you have taken it on faith that the formula β̂IV = π̂1
γ̂1

is actually true. But it is

actually simple to prove. Recall that β̂IV = (Z ′D)−1(Z ′Y ). If you accept that we can apply

partitioned regression to IV just like we can with OLS, then it is trivial to transform the

formula for β̂IV into one in which Z and D are always vectors.18 If Z contains covariates

X, simply redefine Z such that Z̃ = MXZ1, where Z1 is a column vector containing only

the instrument and MX is the orthogonal projection matrix for the covariates, MX = I −
18That partitioned regression works for the 2SLS procedure should be fairly obvious. It is less self-evident

that partitioning must work for the IV formula as well.
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X(X ′X)−1X ′ (X is an N ×K + 1 matrix containing all covariates and a column of ones).19

Thus we can always write β̂1IV as

β̂1IV = (Z̃ ′1D1)
−1(Z̃ ′1Y ) = Cov(z̃i, yi)/Cov(z̃i, di)

Now consider π̂1 and γ̂1. The former comes from a regression of yi on z̃i, so π̂1 =

Cov(z̃i, yi)/Cov(z̃i, zi). The latter comes from a regression of di on z̃i, so γ̂1 = Cov(z̃i, di)/Cov(z̃i, zi).

Thus

π̂1/γ̂1 =
Cov(z̃i, yi)/Cov(z̃i, zi)

Cov(z̃i, di)/Cov(z̃i, zi)
= β̂1IV

The takeaway of all of this is that, when working with an IV estimator, the entire experi-

ment is in the reduced form. The reduced form measures the causal impact of the instrument

on the outcome – the first stage exists only to rescale that estimate and “get the units right.”

Thus, when applying IV, you should always consider the underlying reduced form that you

are running and ascertain whether it makes sense and whether it is identifying the causal

effect in the manner that you originally imagined.

6.4 Multiple Instruments

It’s often very difficult to find one good instrument, let alone two or more good instruments.

Nevertheless, in some cases a single conceptual instrument will be parameterized though

multiple variables (we will see an example of this in the next section). In those cases, we say

that the equation is “overidentified,” in the sense that we have more instruments than we

need. It’s impossible to incorporate more than one instrument into the IV estimator because

β̂IV = (Z ′D)−1(Z ′Y ); Z and D must have the same number of columns, or else the first half

of β̂IV won’t be conformable with the second half. One option would be to simply pick one

instrument and discard the rest, but this seems undesirable from an efficiency standpoint

19Also define the column vector D1 such that D1 contains only the treatment, di.
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because you’re throwing away valid information for estimating β. An attractive alternative

then is to use 2SLS, which can trivially accommodate more than one instrument.

In the two stage procedure, simply include all instruments in the first stage when you

predict the value of di. For example, if you have two instruments, z1i and z2i, estimate the

first stage as:

di = γ1z1i + γ2z2i + xiγ3 + ui

Then use d̂i as the regressor in the second stage instead of di. In matrices, the formula

remains the same: β̂2SLS = (D′PZD)−1(D′PZY ). Now Z contains more columns than D,

but that doesn’t affect the conformability of PZ (which is an N ×N matrix) with D. Under

Gauss-Markov type assumptions, 2SLS efficiently combines all of the instruments to estimate

β.

6.5 Applications

We now consider two important applications of instrumental variables. These applications

are particularly helpful when studying IV in the context of heterogeneous treatment effects

and the “weak instruments” issue (both of which we will cover).

6.5.1 Medical Trials

For a variety of reasons, medical trials are a fantastic example of an application of instru-

mental variables – I would argue the best, in fact. First of all, they are socially important

(perhaps the most important application of IV to date). Furthermore, they are very clean

in terms of experimental design, so they make a great teaching example for conveying the

intuition behind what the IV estimator is doing. My personal recommendation would be to

use this example whenever possible to guide you in understanding how IV operates.

The model for a medical trial is the same simple regression model that we are accustomed

to: yi = β0 + β1di + εi. In this case, yi represents a medical outcome, which could either be
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a continuous variable such as blood pressure or cholesterol level or a discrete variable such

as whether or not you survive (e.g., 1 if you survive, 0 if you do not). The variable di is

generally a dummy variable that is 1 if you receive the treatment and 0 if you do not. It

could alternatively be continuous (for example, it could be the dosage in milligrams of the

drug that you receive), but in this example we will assume it is binary (you either take the

pill or you do not take the pill). The error term εi represents all other factors that affect

the health outcome. Note that the regression model corresponds to the potential outcomes

model with constant treatment effects (y = dy1 + (1− d)y0, y0 = β0 + ε, y1 = y0 + β1).

At this point I will switch to a specific example in order to make the discussion clearer.

Let yi be blood pressure, and let di represent a pill that is designed to treat high blood

pressure, so di = 1 if individual i takes the pill and di = 0 if individual i does not take the

pill. Our goal is to estimate the effect that the pill has on lowering blood pressure – our hope

is that β1 is large and negative. One way to estimate the effect is to start selling the drug to

the general population and then collect some data and run a regression of blood pressure on

whether or not you take the pill. However, this estimate will clearly suffer from a selection

issue – people who take the pill are the ones who have high blood pressure to begin with!

We will likely get a positive estimate of β1 from this procedure, even if the true β1 is large

and negative. This may be true even after we condition on observable covariates using one

of the selection on observables designs we discussed earlier. Therefore, in order to accurately

estimate β1, we design a medical trial in which we randomly assign some patients to the

treatment group and assign other patients to the control group. The patients assigned to

the treatment group are then given the pill and told to take it, while the patients assigned

to the control group are given a placebo (or nothing at all).

Back in the old days (perhaps even older than me), people estimated the effect of the

drug by simply subtracting the mean of yi for the control group from the mean of yi for

the treatment group (in other words, regressing yi on a variable that is 1 if you are in

the treatment group and 0 if you are in the control group). This is what is known as an

“intention to treat” analysis, because you are taking the difference between the group that
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you intend to treat and the group that you do not intend to treat. But there was the problem

of “non-compliance” – some people in the treatment group would fail to take the pill and

others in the control group would obtain the pill from another source, even though they were

not supposed to. This non-compliance can cause a bias in the estimate of β1, and it was not

immediately clear how to fix this bias until it became obvious that what we were looking at

was actually a simple IV problem.

In this case, the instrument zi is the intention to treat, i.e. zi = 1 if you are assigned

to treatment group (we intend to treat you), and zi = 0 if you are assigned to the control

group (we do not intend to treat you). It is easy to see that zi satisfies the two properties of

a good instrument. First of all, zi is uncorrelated with εi by construction, because whether

you are assigned to the treatment group or the control group is randomly determined, so

Cov(zi, εi) = 0. Second, zi is correlated with di, because you are going to be more likely to

take the pill if you are in the treatment group, so Cov(zi, di) 6= 0. Therefore, zi is a valid

instrument for di, and the IV estimator gives us a consistent estimate of β1, the effect of

taking the pill on blood pressure.

How does this fix the non-compliance problem that we discussed before? To facilitate

understanding, assume that the non-compliance problem only exists for the people in the

treatment group. That is to say, assume that nobody in the control group takes the pill, but

also assume that only half the people in the treatment group take the pill (i.e., half of the

treatment group fails to comply and does not take the pill, while the other half takes the

pill, as they were supposed to). What will the IV estimate look like?

The first stage will regress di on zi, i.e. regress whether you took the pill on whether you

were in the treatment group. So the first stage is:

di = γ1zi + ui

Since zero people in the control group took the pill while half the people in the treatment

group took the pill, it should be intuitively clear that our estimate for γ1 will be 0.5 (being
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in the treatment group raises your probability of taking the pill by 50 percentage points, so

γ̂1 = 0.5).

Now recall that the IV estimate is the reduced form rescaled by the first stage. In this

case, the reduced form is a regression of yi (your blood pressure) on zi (whether you were

assigned to the treatment or control group). So the reduced form is:

yi = π1zi + vi

Therefore, our IV estimate is β̂1IV = π̂1/γ̂1 = π̂1/0.5. How is this fixing the non-complier

problem? Well, we know that the reduced form estimates the causal effect of the instrument

on yi, so in our case the reduced form is estimating the effect that being assigned to the

treatment group has on blood pressure. If there were a perfect correlation between being

assigned to the treatment group and taking the pill (i.e. everyone in the treatment group

took the pill, and nobody in the control group took the pill), then the reduced form estimate

would be the effect of taking the pill on blood pressure. In that case the first stage would

give us γ̂1 = 1, and the IV would be β̂1IV = π̂1
γ̂1

= π̂1. In other words, the IV would be the

same as the reduced form (which is what we would expect, since both are supposed to be

estimating the same thing in this case, i.e., the effect of the pill on blood pressure).

In our example, however, there is not a perfect correlation between being assigned to the

treatment group and taking the pill, which is why our first stage estimate is γ̂1 = 0.5, not

γ̂1 = 1. So in our case, the reduced form is estimating the effect on your blood pressure of

increasing the probability that you take the pill by 50 percentage points. This means that

the reduced form is not going to be estimating the full effect of taking the pill. Instead,

it’s estimating half of the effect of taking the pill. If it helps, imagine that there are 10

people in the treatment group, 5 of whom take the pill and 5 of whom do not, and 10 people

in the control group, 0 of whom take the pill. The (expected) mean blood pressure for the

treatment group will be 5·β0+5·(β0+β1)
10

= β0+ β1
2

, while the (expected) mean blood pressure for

the control group will just be β0. So the reduced form coefficient, π̂1, will be the difference
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of means between the treatment and control groups, or β1
2

. This is, of course, half the effect

of taking the pill.

Therefore, the (plim of the) IV estimate will be β1IV = π1
γ1

= 0.5β1
0.5

= β1, which is exactly

what we want. We can see that the IV estimate gives us a consistent estimate precisely

because it is rescaling the reduced form by the first stage. In our example what this means

in practice is that we are rescaling the reduced form to account for the fact that being in the

treatment group only increases your probability of taking the pill by 50 percentage points,

not by a full 100 percentage points. So the reduced form only represents half the effect of

taking the pill, and it must be rescaled by (divided by) 0.5 in order to estimate the full effect

of taking the pill.

More generally, what this example demonstrates is that IV functions by taking the esti-

mated causal effect of zi on yi (the reduced form) and rescaling it by the estimated causal

effect of zi on di (the first stage).

Before we move on, I should note how IV is different than simply taking the mean of yi

for the people in the treatment group who took the pill and subtracting the mean of yi for

the people in the control group who did not take the pill (which, in our example, is the entire

control group). The estimator I just described, which I will refer to as the näıve estimator,

is affected by the same selection issues as a simple OLS regression of yi on di. Specifically, it

may be the case that the people in the treatment group who choose not to take the pill do

so because their blood pressure was not very high to begin with. Thus the group of people

that actually took the pill are the ones that all had high blood pressure to begin with, and

we will tend to estimate that the pill does not have much of an effect (because its downward

effect is being counteracted by the fact that the people who select to take it all had high

blood pressure to begin with).

The IV estimator does not suffer from this selection problem because it does not release

the people in the treatment group who choose not to take the pill. To understand this,

imagine for the moment that there are two types of people in our sample: high blood
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pressure types and low blood pressure types. Assume that they occur with equal frequency,

so that when we randomly assign our sample to the treatment and control groups, half of the

treatment group is high blood pressure, half of the treatment group is low blood pressure,

half of the control group is high blood pressure, and half of the control group is low blood

pressure. The half of the treatment group that takes the pill all have high blood pressure, so

when we apply the näıve estimator and compare their average blood pressure to the average

blood pressure of the control group, we underestimate the effect of the pill because we are

comparing a group of high blood pressure people (who took the pill) to a group that is a 50/50

mix of high blood pressure and low blood pressure people (who did not take the pill). In

contrast, what IV does is compare the mean of the treatment group (which is half high blood

pressure people and half low blood pressure people) to the mean of the control group (which

is half high blood pressure people and half low blood pressure people) in the reduced form.

It then rescales this difference in means by the first stage to account for the fact that not all

of the treated group took the pill. So unlike the näıve estimator, which deceptively compares

a high blood pressure group to a half-high/half-low blood pressure group, IV compares two

comparable groups, and that is why it gives us a consistent estimate of the effect of the pill.

6.5.2 Quarter of Birth

The quarter of birth application is perhaps the most-studied example of IV in the economics

literature. This example is taken from Angrist and Krueger (1991). I will discuss the basic

framework and idea; for more details see the article itself. The purpose is to demonstrate

a nice application of IV/2SLS (which may help you think about what a good instrument

looks like) and to familiarize you with the canonical example used in the “weak instruments”

literature.

The question addressed with this instrument is a familiar one: what is the return to an

additional year of schooling? One way to answer this question is to run a standard regression,

yi = β0 + β1di + xiβ2 + εi , where yi is log wages, di is years of school, and xi is a vector

of covariates. However, as we know, this regression is likely to give us a biased estimate of
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β1 for a variety of reasons, including selection bias and measurement error. The problem

is that Cov(di, εi) 6= 0; one way to address this problem is to find an instrument zi that is

correlated with di (schooling) but uncorrelated with εi.

Angrist and Krueger suggest quarter of birth as the instrument. Why use this as an

instrument for schooling? The idea is that states have mandatory schooling laws stipulating

that students must stay in school until a given age (say age 16, for simplicity). However,

the key thing is that these laws dictate the age at which a student may leave school, not

how many years of schooling a student must get. Therefore, if a student starts school at age

6, she will be legally required to receive 10 years of schooling. However, if she starts school

at age 5, she will be legally required to receive 11 years of schooling. Thus, variations in

the age at which a student starts school will result in variations in the amount of schooling

that student is legally required to receive. While this will not make a difference for most

people (because most people do not drop out of high school as soon as they are no longer

required to be there), it will make a difference for some people, so there should be a nonzero

correlation (albeit a modest one) between the age one starts school and how many years of

schooling one receives.

How does this all pertain to quarter of birth? The quarter in which a student is born

can have a large effect on what age the student starts school because the academic calendar

begins in September regardless of quarter of birth. Many states require children to start

school in the calendar year in which they turn 6. So, for example, a child born in December

(fourth quarter) might start school at age 5.7, and thus be required by law to receive a

minimum of 10.3 years of schooling (16 minus 5.7). However, a child born in January (first

quarter) might start school at age 6.7, and thus be required by law to receive a minimum of

only 9.3 years of schooling (16 minus 6.7). Quarter of birth is thereby correlated with legally

required years of schooling, and thus quarter of birth is also correlated with actual years

of schooling. Quarter of birth therefore satisfies the first property of a good instrument,

Cov(di, εi) 6= 0.

Does quarter of birth satisfy the second property of a good instrument, i.e. Cov(zi, εi) =
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0? Potentially, yes (though it turns out not). It seems plausible that the quarter in which one

is born might not causally affect one’s future wages, except through its effect on schooling

(though there could be some strange weather effect on young babies). There is also no

obvious reason to think that quarter of birth should be spuriously correlated with anything

that affects future wages, particularly if we think that the time of conception is determined

in a random manner. It is therefore plausible that quarter of birth and future wages are

uncorrelated (except through changes in schooling).

How would we implement the quarter of birth instrument in practice? We would probably

use three instruments: a dummy for the first quarter (z1), a dummy for the second quarter

(z2), and a dummy for the third quarter (z3) (we exclude the fourth quarter to avoid the

dummy variable trap, i.e. to avoid perfect colinearity with the constant term). So the first

stage would be to regress schooling on quarter of birth (assuming there are no additional

covariates that we are including):

di = γ0 + γ1z1i + γ2z2i + γ3z3i + ui

Then take the predicted d̂i from the first stage and use them in the second stage to run

the regression:

yi = β0 + β1d̂i + ui

The value of β̂1 from this regression is our estimate of the effect of schooling on wages.

If the two IV assumptions are true (Cov(di, εi) 6= 0 and Cov(zi, εi) = 0), then this will be a

consistent estimate of the effect of schooling on wages.

There are a couple of things to note in this application. First, Angrist and Krueger

implement IV in a couple of different ways. They begin with a Wald estimator which

compares only two groups, people born in the first quarter and people born in the second

through fourth quarters. The Wald estimator divides the difference in mean earnings for

the two groups by the difference in mean schooling. Given our previous discussion of IV, it
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should be clear that this procedure is equivalent to doing IV with a binary instrument and

no covariates. With this estimator, Angrist and Krueger estimate the return to schooling to

be around 0.10 (i.e., one additional year of schooling raises wages by 10 percent) in the 1980

Census. This is higher than the OLS estimate from the same sample, which they find to be

around 0.07. However, Angrist and Krueger also implement a 2SLS procedure in which they

use dozens of instruments. They produce these instruments by interacting quarter of birth

with year of birth (since the effect of quarter of birth on schooling might vary across years).

In their 2SLS regressions, they frequently find coefficients closer to the OLS estimate of 0.07

than to the Wald estimate of 0.10. Unbeknown to them, the culprit behind this pattern is

the “weak instruments” problem, which we will discuss in a subsequent section.

Second, while the quarter of birth instrument is much better than most instruments

you will come across (at least in terms of satisfying the exclusion restriction), it is still not

impervious to criticism. For example, many babies are conceived shortly after people get

married. Some couples are likely to wait until the summer to get married, while other couples

are more likely to get married quickly or when it is most convenient. Therefore, couples of

the first type would be more likely to have children in the first or second quarter, whereas

couples of the latter type would be equally likely to have children in any quarter. If couples

of the first type are different in some important way (e.g., perhaps they have higher income

on average) than couples of the second type, then that could introduce a correlation between

quarter of birth and future wages. Any nonzero correlation between zi and εi would be

particularly problematic in this case because the first stage is relatively weak (again, we will

discuss this issue in a subsequent section).

6.6 Heterogenous Treatment Effects: AIR (1996) and LATE

All of the discussion above concentrates on IV in the context of homogeneous treatment

effects. This was the focus of IV estimation for the first 50 years, but it doesn’t fit in with

our discussion of heterogeneous treatment effects at the beginning of the course. Recall the

distinction between ATE – the average treatment effect for a randomly drawn individual in
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our sample – and TOT – the average treatment effect for a randomly drawn treated individual

in our sample. With IV, these distinctions become more interesting. We have sidestepped

this discussion so far by assuming homogeneous treatment effects, so ATE is equal to TOT,

and both are equal to the average treatment effect for any other sub-population one might

think of. If we allow for heterogeneous treatment effects, however, what is it that IV actually

estimates? ATE? TOT? The answer, presented in Angrist, Imbens, and Rubin’s seminal 1996

paper (henceforth AIR 1996), is “neither.”

6.6.1 Intuition

I focus on explaining intuitively what IV estimates in the context of heterogeneous treatment

effects. I also have notes available presenting the mathematical proof, which I am happy to

share if there is interest. However, I believe that understanding the terms and concepts is

more important than seeing the proof. What IV generally estimates is the “local average

treatment effect,” or LATE. LATE is the average treatment effect of di on yi for the units

for whom changing the instrument (changing zi) changes their treatment status (changes

di). This is somewhat abstract, but it should become clearer in the context of our three

examples, the medical trial, the draft lottery, and the quarter of birth instrument.

What does it mean to say that IV estimates the average treatment effect of di on yi for

the units for whom changing zi changes di? In practice, this is best illustrated in the medical

trial example. In this example, there are four potential types of people. Note that not all of

these types need exist in practice; in fact, we will explicitly rule out one type by assumption

when we do the proof. The first type are people who always take the pill, regardless of

whether they are assigned to the treatment group or the control group.20 In the language of

AIR 1996, we call these people “always-takers.” The second type are people who never take

the pill, regardless of whether they are assigned to the treatment group or the control group.

We call these people “never-takers.” The third type are people that take the pill if and only if

20You might wonder how the control group could get the pill. Think about terms like “black market” or
“prescription abuse.”
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they are assigned to the treatment group. We call these people “LATE-compliers.” Finally,

the fourth type are people who take the pill if and only if they are in the control group. We

call this perverse group the “LATE-defiers,” and we rule them out by assumption.

The people “for whom changing zi changes their value of di” are the people who take

the pill if and only if they are in the treatment group, i.e. the LATE-compliers (recall

that assignment to treatment versus control group is the instrument in this example). The

always-takers are unaffected by the instrument, because they take the treatment regardless

of whether they are in the treatment or control group. Likewise, the never-takers are also

unaffected by the instrument, because they eschew the treatment regardless of whether they

are in the treatment or control group. The defiers are ruled out by assumption. Therefore,

the IV estimator estimates the effect of the pill on blood pressure for the people who take

the pill if they are in the treatment group but do not take it if they are in the control group.

If the effect is homogeneous, then this distinction is irrelevant, but if the effect varies across

individuals, then this distinction can become important.

Suppose that there are two types of people: people who respond to the pill and people

who do not respond to the pill. This is not a far-fetched assumption – most medical trials

find that the treatment is successful in treating some cases, but unsuccessful in treating

other cases. So β1 is negative for people who respond to the pill (remember that we think

the pill should lower blood pressure), and β1 is zero for people who do not respond to the

pill. Further suppose that people who respond to the pill know that they will respond to it

(don’t ask me how), so they always take it, regardless of whether they are in the treatment

or the control group. However, the people for whom the treatment has no effect take the

pill only if they are in treatment group (when they are given the pill for free), and not if

they are in the control group. We know that IV estimates the effect of the treatment on the

LATE-compliers, i.e. the people that take it if and only if they are in the treatment group.

Therefore, in this case, IV estimates the effect of the treatment on the people for whom the

treatment has no effect, because they are the only ones for whom the instrument changes

whether or not they take the pill. So IV will estimate β1 = 0 in this example, despite the
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fact that the average treatment effect is negative.21

Does this mean that IV is inconsistent? Not really – it is simply providing a consistent

estimate of the local average treatment effect (the average effect for the people for whom

changing the instrument changed di), not the average treatment effect for the entire popula-

tion or sample. As long as you interpret IV correctly, then it is not inconsistent. Of course,

it may not estimate what you want to estimate (which might be ATE or TOT), but that’s

the way the cookie crumbles. So the lesson here is that IV is consistent, but that you have

to be careful in thinking about exactly what it is estimating. Importantly, IV estimates the

average treatment effect for individuals that “comply” with the instrument. Since different

instruments will have different sets of compliers, it follows that different instruments can

plim to different values, even if all the instruments under consideration meet the two crite-

ria for valid instruments. This result basically invalidates overidentification tests as a valid

scientific testing procedure and has implications for instrumenting for multiple endogenous

variables simultaneously.

Why does IV estimate LATE in our example? As I have reiterated many times, the IV

estimator is the reduced form divided by the first stage. So if the IV estimate is 0 in the

example I discussed above, that means that the reduced form must be 0. In the medical

trial example, the reduced form is the mean blood pressure for the treatment group minus

the mean blood pressure for the control group. Since the always-takers take the pill when

they are in the treatment group and when they are in the control group, their mean blood

pressure will not be any different when they are in the treatment group than it is when

they are in the control group. So those people will never contribute anything to moving the

reduced form away from zero. The people who can potentially move the reduced form away

from zero are the people who take the treatment when they’re in the treatment group but do

not take it when they are in the control group. But we assumed that those were the people

for whom the pill had no effect, so of course their mean blood pressure in the treatment

21Of course, we could alternatively construct a scenario in which the individuals with no treatment effect
are the never-takers and the individuals with a negative treatment effect are the LATE-compliers. In that
scenario, IV would produce a negative estimate of β1, but the magnitude would be larger than ATE.
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group is not any different than their mean blood pressure in the control group. Thus we get

a reduced form of 0 in our example.

If the pill did have an effect for these people, then the reduced form would be capturing

that effect, and we would get a nonzero coefficient estimate. That coefficient would represent

the total effect of the pill averaged over all of the individuals in the treatment group. In

fact, however, only the LATE-compliers were affected. The IV thus rescales the reduced

form by the first stage because the first stage estimates, in our example, the fraction of the

sample that are LATE-compliers (i.e., the fraction that changed their value of di in response

to being assigned to the treatment group).

To reiterate, the always-takers and the never-takers do not, in expectation, contribute

anything to moving the reduced form away from zero, because for them the treatment in-

dicator is always the same in the treatment group and the control group (and the random

assignment procedure balances them, on average, across treatment and control). Thus their

mean blood pressure is no different in the treatment group than it is in the control group.

Therefore, the only group of people who can move the reduced form away from zero is the

group of LATE-compliers, because for them the treatment level actually varies depending

on whether they are in the treatment group or in the control group. So if the treatment has

an effect for them, then their mean blood pressure will be different in the treatment group

than it is in the control group. But by definition, the LATE-compliers are the people for

whom changing zi changes di. Thus IV estimates the average treatment effect for the people

for whom changing zi changes di, because those are the people who drive the reduced form,

and IV is just the reduced form rescaled by the first stage.

Now consider how LATE applies in the Vietnam draft lottery example. Compliers are

those who are induced to serve due to becoming draft eligible. It is perhaps easiest to consider

the groups that are not compliers. First there are volunteers. These are “always takers” in

the sense that they will serve regardless of whether they are chosen to be draft eligible. Then

there are men who are draft eligible but are not called up because manpower requirements

are met before they are needed. These are “never takers” in the sense that they do not serve



M.L. Anderson, AGRODEP Impact Eval. Training III, June 2014 70

regardless of draft eligibility. Finally consider those who enlist in the National Guard, flee

the country, or go to college to avoid service. These are also never takers, but they may

represent a violation of the exclusion restriction (assuming that participating in the National

Guard, fleeing the country, or going to college affects earnings). LATE compliers are those

who don’t volunteer, who do get called up, and who don’t avoid service when being called

up. Apparently this group represented only about 10 to 16 percent of young males during

the Vietnam era (i.e., the size of Angrist’s first stage estimates).

Finally consider how LATE applies to the quarter of birth example. Recall that in the

quarter of birth example, the instrument works because some people stay in school only as

long as they are legally required to, and then they drop out as soon as they reach age 16.

These are the people for whom the instrument zi (quarter of birth) has an effect on di (years

of school). If it helps, you could literally imagine a 15.5 year old potential dropout who was

born in the third quarter thinking to himself, “If only I had been born in the first quarter,

then I would be able to drop out of school right now, because I’d already be 16. But instead

I have to stay in school until the third quarter and receive 11 years of schooling instead of

10.5 years of schooling!” These people are the equivalent of the LATE-compliers (they don’t

have to actually think in this manner though!). In contrast, however, for the vast majority

of people the instrument (quarter of birth) has no effect on how long they stay in school,

because they plan to stay in school long past the age at which they can legally dropout.

They are the equivalent of the always-takers.22

Since IV estimates the causal effect of di (schooling) on yi (wages) for the people for

whom the instrument zi (quarter of birth) changes their value of di, the IV estimate gives us

the average effect of schooling on wages for people who drop out as soon as they are no longer

legally required to stay in school. So the quarter of birth instrument is really estimating the

average effect of an additional year of schooling on wages for high school dropouts. Is there

any reason to believe that this is the same effect of schooling that the “average” person would

have? Probably not. On the one hand, it may overestimate the “average” effect of schooling

22The never-takers would be the ones that disregard the law entirely and drop out of school long before
they are legally allowed to.
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if we believe that wages are a concave function of schooling, so that the return to schooling

falls as you get more schooling.23 On the other hand, it may underestimate the “average”

effect of schooling if we believe that high school dropouts don’t apply themselves in school

anyway, so they don’t get much out of being in school. Either way, the point is that the

IV regression is estimating the average effect of schooling on wages for high school dropouts

rather than for the entire population. It consistently estimates this effect, but this effect is

probably different than the population average effect of schooling on wages. Thus we need

to be careful about how we interpret the result. Finally, note that the reason IV estimates

the average effect of schooling on wages for high school dropouts is not because our sample

only consists of high school dropouts. The sample is taken from the entire population, but

IV only estimates the average effect of di on yi for the LATE-compliers (i.e., the high school

dropouts), not the average effect for the entire population. However, if our policy interest

pertains to students at risk of dropping out, the average effect for LATE-compliers may be

very informative.

6.6.2 Discussion

We have seen in this section that IV estimates the “local average treatment effect,” or LATE.

This is the average treatment effect for units that are induced by the instrument to change

their treatment status. The clear application of this finding is that it allows us to think more

precisely about which group of individuals our treatment effect estimate applies to. There

are, however, other important implications.

Most importantly, the LATE result implies that, in the presence of treatment effect

heterogeneity, different instruments should produce different estimates, even in arbitrarily

large samples. The choice of instrument defines the group of LATE-compliers; different

instruments therefore estimate the average treatment effect for different groups of LATE-

23This phenomenon has been referred to as “discount rate bias” because a simple human capital model
implies that an individual should stay in school until her return to schooling equals her discount rate.
Students that drop out early do so because they have higher discount rates, and their marginal return to
schooling is higher. However, the term “discount rate bias” is somewhat deceptive in the sense that it’s not
really an issue of bias but rather an issue of heterogeneous treatment effects and external validity.
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compliers. There is no reason why these averages need be equal for different groups.

The fact that different instruments can produce different treatment effect estimates (even

absent sampling error) calls into question the general utility of overidentification tests. These

tests compare coefficient estimates produced by different instruments – the idea is that if the

instruments are all valid, all the estimates should be equal (up to sampling error). If some

instruments are invalid, however, the estimates produced by different instruments may differ.

In the context of heterogeneous treatment effects, however, we know that different instru-

ments can produce different coefficient estimates even if all of the instruments are internally

valid. Thus it is impossible to ever “reject” the validity of the instruments, making the

overidentification tests scientifically questionable. The same critique holds for the Hausman

test, which compares the IV estimate to the OLS estimate. With heterogeneous treatment

effects, there is no reason that OLS (which, under ideal conditions, will estimate ATE or

TOT) need equal IV (which estimates LATE).

Heterogeneous treatment effects also complicate matters when you have multiple en-

dogenous variables that you want to instrument for. Consider, for example, a simple case in

which you wish to simultaneously estimate the effect of education (d1) and experience (d2)

on earnings (y). The model might look like:

yi = β0 + β1d1i + β2d2i + εi

Both “treatments” are subject to selection issues and are endogenously determined. In-

strumenting for education and controlling for experience as a covariate will not give consistent

estimates of the effect of education on earnings – it is inappropriate to control for a variable

that is affected by the treatment (in general, getting more education will mean getting less

job experience). The correct way to estimate the causal effect of education on earnings is to

instrument for education and include as covariates only predetermined variables.

If, however, you want to estimate a structural model that contains both education and

experience, i.e., you want to know the effect of education when holding experience constant
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(even though we may not be able to imagine such a scenario in real life), you might find two

instruments, one for education (call it z1) and one for experience (call it z2).
24 You can then

identify β1 and β2 by running 2SLS, using both z1 and z2 as instruments. Intuitively, 2SLS

is using z2 to estimate β2, and then using this estimate of β2 to adjust for the fact that z1

affects both d1 and d2 when estimating β1 (i.e., the effect of education on earnings holding

experience constant).

With homogenous treatment effects, this strategy is valid. With heterogenous treatment

effects, however, we know that different instruments generally estimate different local average

treatment effects. Assuming that z1 estimates the same treatment effect for d2 that z2

estimates is therefore unjustified.25 In principle, the effect of manipulating education while

holding experience constant could be positive for all individuals, yet the 2SLS procedure

could generate a negative estimate of β1 (even ignoring sampling error).

6.7 Weak Instruments

Weak instruments – that is to say, instruments that are only weakly correlated with the

treatment of interest – pose a special set of problems. First, and most importantly, a weak

first stage implies that any bias in the reduced form will be amplified in the IV estimate.

This is true regardless of the number of instruments one uses. When using many weak

instruments, however, a finite sample issue arises and 2SLS becomes biased towards the

OLS estimate (conventional standard errors are also inaccurate). Though these issues have

been known to some degree for several decades, they were brought to the attention of applied

researchers by Bound, Jaeger, and Baker (1995) (henceforth BJB 1995). I focus on the first

issue – that any bias in the reduced form may be amplified in the IV estimate – here because

I believe it is the more important of the two.

24Of course, the education instrument will invariably affect experience. In principle, however, the experi-
ence instrument need not affect education.

25This is equivalent to assuming that z1 and z2 should both produce identical estimates of β2.
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6.7.1 Omitted Variables Bias

Consider a case with a single endogenous variable, di, one or more instruments, zi, and no

covariates.26 We are interested in the causal relationship between di and yi, summarized as

yi = α + βdi + εi

We have an instrument zi that we use to predict di

di = ziγ + ui

Consider the consistency of β̂OLS and β̂2SLS. For OLS,

plim β̂OLS =
Cov(di, yi)

Var(di)
=

Cov(di, βdi + εi)

Var(di)
= β +

σdε
σdd

The plim for 2SLS relies on the fact that d̂i plims to ziγ,

plim β̂2SLS =
Cov(d̂i, yi)

Var(d̂i)
=

Cov(d̂i, βdi + εi)

Var(d̂i)
=

Cov(ziγ, β(ziγ + ui) + εi)

Var(d̂i)
= β +

σd̂ε
σd̂d̂

If there is zero covariance between d and ε then OLS will consistently estimate β. If

there is zero covariance between z and ε then 2SLS will consistently estimate β (note that

2SLS is never unbiased because it is a ratio of two random variables). What happens when

these covariances are nonzero, however? Under what conditions will one estimator be more

or less inconsistent than the other?

The ratio of the inconsistency in the IV estimator to the inconsistency in the OLS esti-

mator is:

σd̂ε
σdε
· σdd
σd̂d̂

=
σd̂ε
σdε
· 1

R2
FS

26As per BJB 1995, the core results remained unchanged by the addition of covariates.
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R2
FS is the R2 of the first stage; the equality holds because R2

FS = SSR/SST = σd̂d̂/σdd.

If we had covariates in the model, the R2
FS term would be the partial R2 from the first stage,

i.e., the R2 from running di on zi after the covariates have been partialled out from both.27

From the result above, we see that the relative inconsistency of IV vis a vis OLS depends

on two quantities. First, it depends on the covariance of d̂i and εi relative to the covariance

of di and εi. If the covariance of the error term and d̂i increases (relative to the covariance

of the error term and di), then the inconsistency of IV increases – this is quite intuitive.

More interestingly, the relative inconsistency of IV also depends on the inverse of the R2 (or

partial R2, if you have covariates) of the first stage. Thus, if the first stage is weak (i.e.,

low R2), any violation of the exclusion restriction will be amplified, and IV can become very

inconsistent. A first stage (partial) R2 of 0.1, for example, will inflate the ratio
σd̂ε
σdε

by a

factor of 10. Except that things aren’t quite that simple.

The complication is that σd̂ε is itself affected by the strength of the first stage. If the first

stage is weak, then by definition the variance of d̂ will be relatively low, and so the covariance

σd̂ε will tend to be low as well. For tractability, and because it covers the preponderance of

meaningful cases, suppose that zi contains only one instrument. In that case:

σd̂ε
σdε
· 1

R2
FS

=
Cov(γz, ε)

Cov(d, ε)
· Var(d)

Var(γz)
=
σzε/σzσε
σdε/σdσε

· σd
σγz

=
ρzε
ρdε
· 1

RFS

The last expression is more useful in the sense that it is expressed in terms that do

not depend on the units of measurement for any of the variables in question. The second

term, 1
RFS

, confirms that a weak first stage does exacerbate the relative inconsistency of IV

vis a vis OLS, but the degree of bias is not as strong as originally implied. With a first

stage (partial) R2 of 0.1, for example, IV will be less inconsistent than OLS as long as the

correlation between the instrument, zi, and the error term, εi, is approximately three times

less than the correlation between di and εi. With a first stage (partial) R2 of 0.01, however,

the correlation between zi and εi needs to be ten times less than the correlation between di

27With covariates in the model, the σd̂ε and σdε terms are also calculated after the covariates have been
partialled out from di and zi.
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and εi in order for IV to be preferable to OLS.

So, if the first stage is relatively weak, then you should think carefully about whether

your exclusion restriction (Cov(z, ε) = 0) holds. Even a modest correlation between the

instrument and the structural error term can make IV highly inconsistent if the first stage

(partial) R2 is low. This is true regardless of whether you have one instrument or many

instruments.

BJB 1995 analyze the potential for omitted variables bias in Angrist and Krueger (1991)

using the just-identified case. Quarter of birth is parameterized as a single indicator variable

that equals zero if an individual is born in the first quarter and unity if an individual is born

in the second through fourth quarters. With this parameterization, Angrist and Krueger

report a first stage coefficient of 0.1 – people born in the first quarter have 0.1 years less

education than those born in the second through fourth quarters. This is a fairly small

effect, but the coefficient is highly significant since the sample numbers in the hundreds of

thousands.

BJB note that the difference in mean log per capita family income for young children

born in the second through fourth quarters versus those born in the first quarter is 0.024 –

families of children born in the first quarter have per capita income that is about 2.4% lower

than families of children born in the second through fourth quarters. Using an intergener-

ational correlation coefficient of 0.4 (the standard in the literature at that time – now it is

estimated to be even higher), BJB infer that omitted factors might lead to a difference in

mean log income of 0.01 between individuals born in the second through fourth quarters and

individuals born in the first quarter. Though this differential is quite small, it is important

to remember that the first stage is also very small, with a coefficient of 0.1. Thus the bias

in the IV estimate will be 10 times the bias in the reduced form estimate – a reduced form

bias of 0.01 translates to an IV bias of 0.10. Interestingly, this is very close to the return to

education that Angrist and Krueger estimate using the quarter of birth instrument. I am

not claiming that their estimate is necessarily wrong, but the relatively weak first stage does

mean that the quarter of birth design is not quite as clean as it first appears.
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