Nonlinear models

CONTENTS:

- Binary response models: Linear probability Model, Probit and Logit
- Multinomial response models: Multinomial Logit
- Censored models: Tobit and Selection models

Binary response models: Linear Probability Model, Probit and Logit

In qualitative response models, the variable to be explained, y, is a random variable taking on a finite number of outcomes; in practice, the number of outcomes is usually small. The leading case occurs where y is a binary response, taking on the values zero and one, which indicate whether or not certain event has occurred. For example, $y=1$ if a person is employed, $y=0$ otherwise.

In binary response models, interest lies primarily on the (conditional) response probability:

$$
\begin{equation*}
p(\mathbf{x}) \equiv \mathrm{P}(y=1 \mid \mathbf{x})=\mathrm{P}\left(y=1 \mid x_{1}, x_{2}, \ldots, x_{K}\right) \tag{1}
\end{equation*}
$$

for various values of \mathbf{x}.

Linear probability model

The linear probability model (LPM) for binary response y is specified as

$$
\begin{gather*}
\mathrm{P}(y=1 \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{K} x_{K} \equiv \mathbf{x} \boldsymbol{\beta} \tag{2}\\
\mathrm{P}(y=0 \mid \mathbf{x})=1-\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{K} x_{K}\right) \equiv 1-\mathbf{x} \boldsymbol{\beta} \tag{3}
\end{gather*}
$$

Assuming that x_{1} is not functionally related to the other explanatory variables $\beta_{1}=\partial \mathrm{P}(y=1 \mid \mathbf{x}) / \partial x_{1}$. Therefore, β_{1} is the change in probability of success given a one-unit increase in x_{1}. If x_{1} is a binary explanatory variable, β_{1} is just the difference in the probability of success when $x_{1}=1$ and $x_{1}=0$, holding the other x_{j} constant. The important point is that the β_{i} now measures the effects of the explanatory variables x_{i} on a particular probability.

Given a random sample, the OLS regression of y on $1, x_{1}, x_{2}, \ldots, x_{K}$ produce consistent and unbiased estimators of the β_{j}. Heteroskedasticity will be present in this model so it is often convenient to use heteroskedasticity-robust standard errors. ${ }^{1}$

[^0]
EXAMPLE 1 (Married Women's Labor Force Participation)

We can estimate a linear probability model for labor force participation (inlf) for married women using the MROZ.RAW data. On the 753 women in the sample, 428 report working non-zero hours during the year. The variables we use to explain labor force participation are age, education, experience, nonwife income in thousands (nwifeinc), number of children less than six years of age (kidslt6), number of kids between 6 and 18 inclusive (kidsge6). We estimate the following model:

$$
\begin{align*}
& \text { inlf }=\beta_{0}+\beta_{1} n w i f e i n c+\beta_{2} \text { educ }+\beta_{3} \text { exper }+\beta_{4} \text { expers } q+\beta_{5} \text { age }+\beta_{6} \text { kidslt } 6+\beta_{7} \text { kidsge } 6 \tag{4}\\
& \text {. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz } \\
& \text {. regress inlf nwifeinc educ exper expersq age kidslt6 kidsge6,r } \\
& \text { Linear regression Number of obs }=\quad 753 \\
& \text { F (7, 745) }=62.48 \\
& \text { Prob }>\text { F }=0.0000 \\
& \text { R-squared }=0.2642 \\
& \text { Root MSE }=.42713
\end{align*}
$$

inlf	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
nwifeinc	-. 0034052	. 0015249	-2.23	0.026	-. 0063988	-. 0004115
educ	. 0379953	. 007266	5.23	0.000	. 023731	. 0522596
exper	. 0394924	. 00581	6.80	0.000	. 0280864	. 0508983
expersq	-. 0005963	. 00019	-3.14	0.002	-. 0009693	-. 0002233
age	-. 0160908	. 002399	-6.71	0.000	-. 0208004	-. 0113812
kidslt6	-. 2618105	. 0317832	-8.24	0.000	-. 3242058	-. 1994152
kidsge6	. 0130122	. 0135329	0.96	0.337	-. 013555	. 0395795
_cons	. 5855192	. 1522599	3.85	0.000	. 2866098	. 8844287

With the exception of kidsge6, all coefficients have reasonable signs and are statistically significant; kidsge6 is neither statistically significant. The coefficient of nwifeinc means that if nonwife income increases by 10 $(\$ 10,000)$, the probability of being in the labor force is predicted to fall by 0.034 . Having one more small kid is estimated to reduce the probability of labor force participation by about 0.262 , which is fairly a large effect.

Probit and Logit model

We now study binary response models of the form

$$
\begin{equation*}
\mathrm{P}(y=1 \mid \mathbf{x})=G(\mathbf{x} \beta) \equiv p(\mathbf{x}) \tag{5}
\end{equation*}
$$

where \mathbf{x} is $1 \mathbf{x K}, \beta$ is Kx 1 and we take the first element of \mathbf{x} to be unity (constant). For the linear probability model, $\mathrm{G}(\mathrm{z})=\mathrm{z}$ is the identity function, which means that the response probabilities are not necessarily between 0 and 1 for all z. Now, we will assume that $G($.$) takes values between the unit interval: 0<G(z)>1$ for all $z \in \mathbb{R}$.

The probit model is a special case of equation (5) with:

$$
\begin{equation*}
G(z) \equiv \Phi(z) \equiv \int_{-\infty}^{z} \emptyset(v) d v \tag{6}
\end{equation*}
$$

where $\Phi(z)$ is the cumulative distribution function of a standard normal distribution and $\varnothing(z)$ is the standard normal density is $\emptyset(z)=(2 \pi)^{-1 / 2} \exp \left(-z^{2} / 2\right)$.

The logit model is a special case of equation (5) with:

$$
\begin{equation*}
\mathrm{G}(\mathrm{z})=\Lambda(z) \equiv \exp (z) /[1+\exp (z)] \tag{7}
\end{equation*}
$$

where $\Lambda(z)$ is the logistic function.

In order to implement the probit and logit models, it is important to know how to interpret the β_{j}. Take into account that in the classical linear regression model, β_{j} give us the effect on y of a one-unit change in x_{j} holding all the others x's constant but note that this is not true for the β_{j} that is estimated in the probit or logit model. First note that the sign of the effect is given by the sign of β_{j} as in the case of the classical lineal regression model. Now, for the change in the j-th regressor x_{j}, the marginal change of the conditional probability is given as:

$$
\begin{equation*}
\frac{\partial \operatorname{Pr}(\mathrm{y}=1 \mid \mathbf{x})}{\partial x_{j}}=\beta_{j} f(\mathbf{x} \boldsymbol{\beta}) \tag{8}
\end{equation*}
$$

where f is the probability density function. This is equal to the standard normal probability density function in the probit model and the logistic distribution probability density function in the logit model.

The coefficients of the probit and the logit model are not directly comparable since they are scaled differently. However, signs and significance are comparable.

Both the logit and the probit model are estimated by Maximum Likelihood Estimation (MLE)

EXAMPLE 1 (Married Women's Labor Force Participation-Continuation)

We now estimate the probit and logit models for women labor force participation. The signs of the coefficients are consistent across the models and the same variables are statistically significant in each model (including the LPM above) but, as already commented, the magnitudes of the coefficients are not directly comparable across models.

```
. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
```

Probit regression
Log likelihood $=-401.30219$

Number of obs	$=$	753
LR chi2(7)	$=$	227.14
Prob $>$ chi2	$=$	0.0000
Pseudo R2	$=$	0.2206

| inlf | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| nwifeinc | -.0120237 | .0048398 | -2.48 | 0.013 | -.0215096 | -.0025378 |
| educ | .1309047 | .0252542 | 5.18 | 0.000 | .0814074 | .180402 |
| exper | .1233476 | .0187164 | 6.59 | 0.000 | .0866641 | .1600311 |
| expersq | -.0018871 | .0006 | -3.15 | 0.002 | -.003063 | -.0007111 |
| age | -.0528527 | .0084772 | -6.23 | 0.000 | -.0694678 | -.0362376 |
| kidslt6 | -.8683285 | .1185223 | -7.33 | 0.000 | -1.100628 | -.636029 |
| kidsge6 | .036005 | .0434768 | 0.83 | 0.408 | -.049208 | .1212179 |
| cons | .2700768 | .508593 | 0.53 | 0.595 | -.7267472 | 1.266901 |

```
. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
```

Logistic regression	Number of obs	$=753$
	LR chi2 (7)	$=$
Log likelihood $=-401.76515$	Prob $>$ chi2	$=$

inlf	Coef.	Std. Err.	z	P>\|z		[95\% Conf. Interval]	
nwifeinc	-.0213452	.0084214	-2.53	0.011	-.0378509	-.0048394	
educ	.2211704	.0434396	5.09	0.000	.1360303	.3063105	
exper	.2058695	.0320569	6.42	0.000	.1430391	.2686999	
expersq	-.0031541	.0010161	-3.10	0.002	-.0051456	-.0011626	
age	-.0880244	.014573	-6.04	0.000	-.116587	-.0594618	
kidslt6	-1.443354	.2035849	-7.09	0.000	-1.842373	-1.044335	
kidsge6	.0601122	.0747897	0.80	0.422	-.086473	.2066974	
_cons	.4254524	.8603697	0.49	0.621	-1.260841	2.111746	

We can use a rough rule of thumb to compare the estimates between models. In particular, we can divide the logit estimates by four and the probit estimates by 2.5 to make all estimates comparable to the LPM estimates. For example, for the coefficients on kidsltt, the scaled logit estimate is about -0.361 and the scaled probit estimate is about -0.347 .

Why? If we evaluate the standard normal probability density function, $\varnothing\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k}\right)$, at the average values of the independent variables in the sample, we obtain about 0.391 ; this value is close enough to 0.4 to make the rule of thumb for scaling the probit coefficients useful in obtaining the effects on the response probability (in the case of the logit model we obtain a value of 0.243 which is close to 0.25). In other words, to estimate the change in the response probability given a one-unit increase in any independent variable, we multiply the corresponding coefficients by 0.4 in the probit model and by 0.25 in the logit model.

How do we formally get the marginal effects (ME) when using a probit or logit model? One easy way to get the marginal effects and their standard errors in Stata is using the postestimation command $m f x$. The command can compute several different types of MEs, evaluated at different values, for all regressors or a subset of regressors. The default is to evaluate at the sample mean $\mathrm{x}=\overline{\mathrm{x}}$. Note that for binary variables, $m f \mathrm{x}$ computes discrete changes of the variable from 0 to 1 . Getting the marginal effects in the example above:
. quietly probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
. mfx

Marginal effects after probit
$y=\operatorname{Pr}(i n l f)$ (predict)
$=.58154201$

variable	dy/dx	Std. Err.	z	P>\|z		[95\% C.I.	X
nwifeinc	-.0046962	.00189	-2.48	0.013	-.008401	-.000991	20.129	
educ	.0511287	.00986	5.19	0.000	.031805	.070452	12.2869	
exper	.0481771	.00733	6.57	0.000	.033815	.062539	10.6308	
expersq	-.0007371	.00023	-3.14	0.002	-.001197	-.000277	178.039	
age	-.0206432	.00331	-6.24	0.000	-.027127	-.01416	42.5378	
kidslt6	-.3391514	.04636	-7.32	0.000	-.430012	-.248291	.237716	
kidsge6	.0140628	.01699	0.83	0.408	-.019228	.047353	1.35325	

First note that the predicted probability of participating in the labor force is 0.5815 for a married woman at the average age of 42.5 years, with 12 years of education, 10 years of working experience, having one kid more than 6 years old and no kids less than 6 years old, and whose family nonwife income is $\$ 20,139$ in average.

From the results we can see that one year more of education increases the probability of married woman of participating in the labor force by 0.05 and having one more kid less than 6 years old decreases the probability of married woman of participating in the labor force by 0.34 .

The results are similar when using a logit model to estimate the same model above. The choice between logit and probit models will depend on which model performs better than the other.

```
. quietly logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
. mfx
Marginal effects after logit
    y = Pr(inlf) (predict)
        = .58277201
```

variable	$d y / d x$	Std. Err.	z	$P>\|z\|$	[95\%	C.I.]	X
nwifeinc	-. 0051901	. 00205	-2.53	0.011	-. 009204	-. 001176	20.129
educ	. 0537773	. 01056	5.09	0.000	. 033078	. 074476	12.2869
exper	. 0500569	. 00782	6.40	0.000	. 034721	. 065393	10.6308
expersq	-. 0007669	. 00025	-3.10	0.002	-. 001252	-. 000281	178.039
age	-. 021403	. 00354	-6.05	0.000	-. 028341	-. 014465	42.5378
kidslt6	-. 3509498	. 04964	-7.07	0.000	-. 448241	-. 253658	. 237716
kidsge6	. 0146162	. 01819	0.80	0.422	-. 021032	. 050265	1.35325

Multinomial response models: Multinomial logit

The logit model for binary outcomes can be extended to the case where the unordered response has more than two outcomes. Examples of unordered multinomial response include occupational choice, choice of health plan and transportation mode for commuting to work. In each case, an individual chooses one alternative from a group of choices and the labeling of the choices is arbitrary.

As in the binary response case, we are interested in how changes in \mathbf{x} affect the response probabilities $\mathrm{P}(y=j \mid \mathbf{x}), j=0,1,2, \ldots, J$ holding everything else constant. Since the probabilities must sum up to unity, $\mathrm{P}(y=0 \mid \mathbf{x})$ is determined once we know the probabilities for $j=1,2, \ldots, J$. The coefficients are interpreted with respect to that category with is called the base category.

Let x be a 1 xK vector with first-element unity. The multinomial logit (MNL) model has response probabilities:

$$
\begin{equation*}
\mathrm{P}(y=j \mid \mathbf{x})=\exp \left(\mathbf{x} \boldsymbol{\beta}_{j}\right) /\left[1+\sum_{h=1}^{J} \exp \left(\mathbf{x} \boldsymbol{\beta}_{h}\right)\right], \quad j=1,2, \ldots, J \tag{9}
\end{equation*}
$$

where $\boldsymbol{\beta}_{j}$ is Kx1 $, j=1,2, \ldots, J$.
When $J=1$, the model reduces to the binary logit model. The multinomial logit model is estimated by maximum likelihood.

EXAMPLE 2 (School and Employment Decisions for Young Men) The data KEANE.RAW contains employment and schooling history for a sample of men for the years 1981 to 1987 . We will use the data for the year 1987. The three possible outcomes are enrolled in school (status=1), not in school and not working (status=2), and working (status=3). The explanatory variables are education (educ), past work experience (exper), and a black race indicator (black). We estimate the following model:

$$
\begin{equation*}
\text { status }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\beta_{4} \text { black } \tag{10}
\end{equation*}
$$

[^1]

A positive coefficient from mlogit means that as the regressor increases, we are more likely to choose alternative j than alternative 1 (where alternative 1 the base category). Thus, another year of education reduces the odds of being at home than enrolled in school, while the odds of being at home than enrolled in school is higher for black men. The magnitudes of these coefficients are difficult to interpret. Instead, we can compute relative-risk ratios (odds ratio) fo a unit-change in each corresponding variable by taking exponentials of the multinomial logit coefficients $e^{\widehat{\beta}}$ or by specifying the option $r r r$:

Thus, one unit increase in education leads to a relative odd ratio of working instead of attending school that is 0.73 times what the ratio was before the change. Also, for black people relative to non-black, the relative risk for working relative to stay in school would be expected to increase by a factor of 1.36 , holding all other variables in the model constant.

Also, as in the bivariate case we could use the $m f x$ post-estimation command. In this case we will obtain the change in probability of the j alternative rather relative to the other J-1 alternatives by specifying for which of the alternatives we are obtaining the marginal effect:

```Marginal effects after mlogit y = Pr(status==3) (predict, pr outcome(3) =.82625034```							
variable	$d y / d x$	Std. Err.	z	$P>\|z\|$	95\%	C.I. ]	X
educ	. 034636	. 00428	8.09	0.000	. 026246	. 043026	12.5492
exper	. 1344291	. 01354	9.93	0.000	. 107887	. 160971	3.4403
expersq	-. 0096146	. 00173	-5.57	0.000	-. 013	-. 006229	17.1992
black*	-. 0548704	. 02091	-2.62	0.009	-. 095851	-. 01389	. 379732

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

One year more of education increases by 0.034 the probability of being working rather than being in school or being at home.

## Censored models: Tobit and Selection models

Sometimes we have incompletely observed data. Causes of this incompleteness are truncation and censoring. In truncated data, some observations on both the dependent variable and the regressors are lost. For example, income may be the dependent variable and only low-income people are included in the sample. In censored data, information on the dependent variable is lost but not the data on the regressors. For example, people of all income levels may be included in the sample, but for confidentiality reasons the income of high-income people may be top-coded and reported only as exceeding, say, \$100,000 per year.

Truncation involves greater information loss than does censoring.

## Tobit model

Suppose that our data consists of $\left(\mathrm{y}_{i}, \mathbf{x}_{i}\right), i=1, \ldots, \mathrm{~N}$. Assume that $\mathbf{x}_{i}$ is fully observed but $y_{i}$ is not always observed. Specifically some $y_{i}$ are zero. One interpretation is that zero is a censored observation. Suppose that a household has a latent (unobserved) demand for goods, denoted by $\mathrm{y}^{*}$, and it is not expressed as a purchase until some known constant threshold, denoted by $L$, is achieved. We observe $y^{*}$ only when $y^{*}>L$. Then the zero expenditure can be interpreted as a left-censored variable that equals zero when $\mathrm{y}^{*} \leq \mathrm{L}$. Thus, the observed sample consists of censored and uncensored observations. Observations can be left-censored or right-censored.

The regression of interest is specified as an unobserved latent variable, $\mathrm{y}^{*}$ :

$$
\begin{equation*}
\mathrm{y}_{i}^{*}=\mathbf{x}_{i}^{\prime} \beta+\varepsilon_{i}, \quad i=1, \ldots, \mathrm{~N} \tag{11}
\end{equation*}
$$

where $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and $\mathbf{x}_{i}$ denotes the Kx1 vector of exogenous and fully observed regressors. If $\mathrm{y}^{*}$ were observed, we would estimate ( $\beta, \sigma^{2}$ ) by OLS in the usual way.

The observed variable $y_{i}$ is related to the latent variable $y^{*}$, through the observation rule

$$
y= \begin{cases}\mathrm{y}^{*} & \text { if } \mathrm{y}^{*}>\mathrm{L} \\ \mathrm{~L} & \text { if } \mathrm{y}^{*} \leq \mathrm{L}\end{cases}
$$

EXAMPLE 3 (Annual Hours Equation for Married Women) We use the MROZ.RAW dataset to estimate the annual hours equation for married women. Of the 753 women in the sample, 428 worked for a wage outside home during the year; 325 of the women worked zero hours. Thus, annual hours worked is a reasonable candidate to implement a Tobit model. The regressors are the same as in EXAMPLE 1 (age, education, experience, nonwife income in thousands, number of children less than six years of age, number of kids between 6 and 18).

Since this data is subject to left censoring at zero, the option $l l(0)$ is required when estimating the model.

```
. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz
. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
Tobit regression Number of obs = 753
 LR chi2(7) = 271.59
```



| hours | Coef. | Std. Err. | $t$ | P>\|t| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| nwifeinc | -8.814243 | 4.459096 | -1.98 | 0.048 | -17.56811 | -.0603723 |
| educ | 80.64561 | 21.58322 | 3.74 | 0.000 | 38.27453 | 123.0167 |
| exper | 131.5643 | 17.27938 | 7.61 | 0.000 | 97.64231 | 165.4863 |
| expersq | -1.864158 | .5376615 | -3.47 | 0.001 | -2.919667 | -.8086479 |
| age | -54.40501 | 7.418496 | -7.33 | 0.000 | -68.96862 | -39.8414 |
| kidslt6 | -894.0217 | 111.8779 | -7.99 | 0.000 | -1113.655 | -674.3887 |
| kidsge6 | -16.218 | 38.64136 | -0.42 | 0.675 | -92.07675 | 59.64075 |
| _cons | 965.3053 | 446.4358 | 2.16 | 0.031 | 88.88529 | 1841.725 |
| /sigma | 1122.022 | 41.57903 |  |  | 1040.396 | 1203.648 |

All the regressors aside from kidsge6 are statistically significant at 0.05 level. Tobit regression coefficients are interpreted in the similar manner to OLS regression coefficients; however, the linear effect is on the uncensored latent variable, not the observed outcome. For example, for a one unit increase in education, there is an 80.64 point increase in the predicted value of hours, and having one more kid less than 6 , is associated with an 894 unit decrease in the predicted value of hours.

## Selection models

Sometimes we may have nonrandom samples or selected samples. Selection may be due to self-selection, where the outcome of interest determined in part by individual choice of whether or not to participate in the activity of interest. Selection may also result from sample selection, with those who participate in the activity of interest may be deliberately oversampled, an extreme case being sampling only participants. In either case, similar issues arise and it is recommended to use selection models (or sample selection models) to account for potential selection bias.

One of the leading examples in selection models are the bivariate sample selection model.

EXAMPLE 4 (Wage Offer Equation for Married Women) We use the data in MROZ.RAW to estimate a wage supply function for married women accounting for potential selectivity bias into the workforce.

Let $y_{2}^{*}$ denote the outcome of interest, in this case wage. We introduce a second latent variable $y_{1}^{*}$ which in this case represents the participation in the labor force. Thus, the outcome $y_{2}^{*}$ is observed if $y_{1}^{*}>0$.

The maximum likelihood estimation of the bivariate sample-selection model with the heckman command is straightforward.

Heckman selection model -- two-step estimates (regression model with sample selection)				Number of obs Censored obs Uncensored obs   Wald chi2(3)   Prob > chi2		$\begin{aligned} & 753 \\ & 325 \\ & 428 \end{aligned}$
						51.53
						0.0000
	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
lwage						
educ	. 1090655	. 015523	7.03	0.000	. 078	. 13949
exper	. 0438873	. 0162611	2.70	0.007	. 01201	. 0757584
expersq	-. 0008591	. 0004389	-1.96	0.050	-. 0017	$1.15 \mathrm{e}-06$
_cons	-. 5781033	. 3050062	-1.90	0.058	-1.175	. 0196979
inlf						
nwifeinc	-. 0120237	. 0048398	-2.48	0.013	-. 0215	-. 0025378
educ	. 1309047	. 0252542	5.18	0.000	. 081	. 180402
exper	. 1233476	. 0187164	6.59	0.000	. 0866	. 1600311
expersq	-. 0018871	. 0006	-3.15	0.002	-. 003	-. 0007111
age	-. 0528527	. 0084772	-6.23	0.000	-. 069	-. 0362376
kidslt6	-. 8683285	. 1185223	-7.33	0.000	-1.100	-. 636029
kidsge6	. 036005	. 0434768	0.83	0.408	-. 04	. 1212179
_cons	. 2700768	. 508593	0.53	0.595	-. 7267	1.266901
mills						
lambda	. 0322619	.1336246	0.24	0.809	-. 229	. 2941613
rho	0.04861					
sigma	. 66362876					

The select option is used to specify the selection equation which in this example is the same labor force participation equation as in EXAMPLE 1. The coefficients in the wage equation are interpreted as if we observed wage data for all women in the sample.

For comparison, we present the OLS results below. The differences between the OLS and Heckman estimates are practically small as the "selectivity effect" (lambda) to correct for potential selection bias is not statistically significant.
. regress lwage educ exper expersq

Source	SS	df	MS					
Model   Residual	35.0223023   188.305149	424	11.6741008					
Total	223.327451						427	.523015108


| Number of obs | $=428$ |
| ---: | ---: | ---: |
| F ( 3, 424) | $=26.29$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1568$ |
| Adj R-squared | $=0.1509$ |
| Root MSE | $=.66642$ |


lwage	Coef.	Std. Err.	$t$	P>\|t		[95\% Conf. Interval]	
educ	.1074896	.0141465	7.60	0.000	.0796837	.1352956	
exper	.0415665	.0131752	3.15	0.002	.0156697	.0674633	
expersq	-.0008112	.0003932	-2.06	0.040	-.0015841	-.0000382	
_cons	-.5220407	.1986321	-2.63	0.009	-.9124668	-.1316145	

EXERCISE 1 (Linear probability model and probit model)
Use the data in GROGGER.RAW ("use http://fmwww.bc.edu/ec-p/data/wooldridge/grogger") for this question.
a) Define a binary variable, say arr86, equal to unity if a man was arrested at least once during 1986, and zero otherwise. Estimate a linear probability model relating arr86 to pcnv, avgsen, tottime, inc86, black, hispan, and born60. Report the usual heteroskedasticity-robust standard errors. What is the estimated effect on the probability of arrest if pcnv goes from 0.25 to 0.75 ?
b) Test the joint significance of avgsen and tottime, using a nonrobust and robust test.
c) Now estimate the model by probit. At the average values of avgsen, tottime, inc86, and ptime86 in the sample, and with black $=1$, hispan $=0$ and born $60=1$, what is the estimated effect on the probability of arresr if pcnv goes from 0.25 to 0.75 ? Compare the results with the answer from part a)
d) For the probit model estimated in part c), obtain the percent correctly predicted. What is the percent correctly predicted when narr86=0? When narr86=1? What do you make of these findings?

## EXERCISE 2 (Tobit model)

Use the data in FRINGE.RAW ("use http://fmwww.bc.edu/ec-p/data/wooldridge/fringe") for this question.
a) Estimate the linear model by OLS relating hrbens to exper, age, educ, tenure, married, male, white, northeast, nrthcen, south, and union.
b) Estimate a Tobit model relating the same variables from part a), Why do you suppose the OLS and Tobit estimates are so similar?
c) Add exper ${ }^{2}$ and tenure ${ }^{2}$ to the Tobit model from part b). Should these be included?
d) Are there significant differences in hourly benefits across industry, holding the other factors fixed?


[^0]:    ${ }^{1}$ Since $y_{i}$ can only take two values ( 0 and 1), given $x_{i}$, the error term $u_{i}$ can only take on two values also $\left(1-\beta x_{i}\right)$ when $y_{i}=1$ and $-\beta x_{i}$ when $y_{i}=0$. This implies that $\operatorname{Var}\left(u_{i}\right)=\beta x_{i}\left(1-\beta x_{i}\right)$ meaning that the variance of the error term depends on $x_{i}$ and therefore we have heteroskedasticity.

[^1]:    . use http://fmwww.bc.edu/ec-p/data/wooldridge/keane

    - keep if year==87
    (10985 observations deleted)
    . mlogit status educ exper expersq black, baseoutcome (1)

