Instrumental-variables estimation

CONTENTS:

- IV estimators: IV, 2SLS and GMM
- Testing for endogeneity and overidentifying restrictions
- Weak instruments

IV estimators: IV, 2SLS and GMM

Instrumental variables

To motivate the need for the implementation of an instrumental variables (IV) approach, consider the following linear population model

$$
\begin{gather*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{K} x_{K}+u \tag{1}\\
E(u)=0, \quad \operatorname{Cov}\left(x_{j}, u\right)=0, \quad j=1,2, \ldots K-1 \tag{2}
\end{gather*}
$$

where x_{K} might be correlated with u. That is $x_{1}, x_{2}, \ldots, x_{K-1}$ are exogenous, but x_{K} is potentially endogenous in equation (1). Equation (1) is known as the structural equation.

Endogeneity may result from many sources such as:

- Omitted variables: it appears when the specified model incorrectly leaves out one or more important casual factors. A good example of is omitted ability in a wage equation, where an individual's years of schooling are likely to be correlated with unobserved ability.
- Measurement errors: it occurs when we can only observe an imperfect measure of one of the variables we want to include in the model. An example of measurement error is found when we want to estimate a savings function with permanent income as a regressor. Since we do not observe permanent income we use current income (observable) as an imperfect measure of the permanent income.
- Simultaneity: it arises when at least one of the explanatory variables is determined simultaneously along with y. We can find an example of simultaneity in looking at the effect of alcohol consumption on worker productivity (as typically measured by wages), as alcohol demand would usually depend on income which is largely determined by wage.

OLS estimation of equation (1) will result in inconsistent estimates of all β_{j} if $\operatorname{Cov}\left(x_{K}, u\right) \neq 0$ and the method of instrumental variables provides a solution to the problem of an endogenous explanatory variable.

Instrumental variables (IV)

To use the IV approach with x_{K} endogenous, we need an observable variable, z_{1}, not in equation (1) that satisfies two conditions:

- IV1: $\operatorname{cov}\left(z_{1}, u\right)=0$, that is, $\boldsymbol{z}_{\mathbf{1}}$ is uncorrelated with \boldsymbol{u}

Consider the linear projection of x_{K} on all the exogenous variables (this is the so called reduced form equation):

$$
\begin{equation*}
x_{K}=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\delta_{K-1} x_{K-1}+\theta_{1} z_{1}+r_{K} \tag{3}
\end{equation*}
$$

The key assumption on this linear projection is that the coefficient of z_{1} is nonzero:

- IV2: $\theta_{1} \neq 0$; that is, z_{1} is partially correlated with x_{K} after accounting for all other exogenous variables $x_{1}, x_{2}, \ldots, x_{K-1}$. Loosely speaking we can describe this condition as $\boldsymbol{z}_{\mathbf{1}}$ is correlated with x_{K}

Note here an important difference between condition IV1 and condition IV2: the first one cannot be tested (because it involves the unobservable) while the second one can be tested. When z_{1} satisfies the two conditions above then it is said to be a (valid) instrument or instrumental variable for x_{K}. Because $x_{1}, x_{2}, \ldots, x_{K-1}$ are already uncorrelated with u, they serve as their own instruments in equation (1).

The key to derive the IV estimator comes from the condition IV1 which implies that $\mathrm{E}\left(\mathbf{z}_{i} u_{i}\right)=0$ and hence the moment condition $\mathrm{E}\left\{\mathbf{z}_{i}^{\prime}\left(y_{i}-x_{i}^{\prime} \beta\right)\right\}=0$. Using the sample analog of the moment condition we can solve for β and find the IV estimator. When the number of instruments is equal to the number of regressors (justidentified case), the instrumental variables (IV) estimator is defined as:

$$
\begin{equation*}
\hat{\beta}_{I V}=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y} \tag{4}
\end{equation*}
$$

where \mathbf{Z} is an $N \mathrm{x} K$ matrix of exogenous variables (instruments) ${ }^{1}, \mathbf{X}$ is the $N \mathrm{x} K$ matrix of regressors and \mathbf{y} is an $N \mathrm{x} 1$ vector of the dependent variable.

EXAMPLE 1 (Instrumental variables for Education in a wage equation)

Consider the following equation:

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { exper }+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { married }+u \tag{5}
\end{equation*}
$$

In this case, u can be thought of being correlated with educ because of omitted unobserved ability and other factors such as quality of education and family background that can be determining your wage as well as the level of education attained. We can use the mother's education (meduc) as an instrument for education. For meduc to be a valid instrument for educ we must assume that meduc is uncorrelated with u and that $\theta_{1} \neq 0$ in the reduced form equation. Using the WAGE2.RAW again we find the following results:

[^0]. use http://fmwww.bc.edu/ec-p/data/wooldridge/wage2
. *testing if mother's education is correlated with education
. regress educ exper age married meduc

Source	SS	df	MS	Number of obs	857
				F(4, 852)	116.72
Model	1463.23508	4	365.808771	Prob > F	0.0000
Residual	2670.16048	852	3.13399118	R-squared	0.3540
				Adj R-squared	0.3510
Total	4133.39557	856	4.82873314	Root MSE	1.7703

educ	Coef.	Std. Err.	t	P>\|t		[95\% Conf. Interval]	
exper	-.2822407	.0166502	-16.95	0.000	-.3149209	-.2495606	
age	.2111836	.0225492	9.37	0.000	.166925	.2554422	
married	-.1273378	.1967901	-0.65	0.518	-.5135881	.2589125	
meduc	.2087239	.0216673	9.63	0.000	.1661965	.2512514	
_cons	7.72743	.7174672	10.77	0.000	6.31922	9.13564	

The results suggest that the education of the mother is partially correlated with the education of the individual, as condition IV2 requires.

Instrumental variables (2SLS) regression							
Source	SS	$d f$	MS		Number of obs	$=\quad 857$	
					F (4, 852)	$=$	22.14
Model	7.5680422	41.8	01055		Prob > F	$=$	0.0000
Residual	141.793009	852.16	23719		R-squared	$=$	0.0507
					Adj R-squared	$=$	0.0462
Total	149.361051	856.17	87209		Root MSE	$=$. 40795
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	I	rval]
educ	.1520837	. 0239216	6.36	0.000	. 1051315		990359
exper	. 0399734	. 0083948	4.76	0.000	. 0234964		564503
age	-. 0068149	. 0075032	-0.91	0.364	-. 0215419		079121
married	. 2035129	. 0454691	4.48	0.000	.1142683		927574
_cons	4.314075	. 2827491	15.26	0.000	3.759109		869041
Instrumented: educ							
Instruments:	exper age married meduc						

All the parameter estimates changed from the previous estimation without instrumenting (in the linear models handout). Now the results suggest that one additional year of education generates an expected percentage change of 15.2% in monthly earnings at a 1% significance level.

Two-stage least squares

Now, consider the case where there is more than one instrumental variable for x_{K} (over-identified case):

$$
\begin{equation*}
x_{K}=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\delta_{K-1} x_{K-1}+\theta_{1} z_{1}+\cdots+\theta_{M} z_{M}+r_{K} \tag{6}
\end{equation*}
$$

Let $z_{1}, z_{2}, \ldots, z_{M}$ be variables such that $\operatorname{cov}\left(z_{h}, u\right)=0, h=1, \ldots, M$ so each variable is exogenous in equation (1). The moment condition presented above has no solution for β because it is a system with more equations than unknowns. One possible solution is to arbitrarily drop instruments to get to the just-identified case but there are more efficient estimators. One estimator is the two-stage least squares (2SLS) estimator:

$$
\begin{equation*}
\hat{\beta}_{2 S L S}=\left\{\mathbf{X}^{\prime} \mathbf{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{X}\right\}^{-1} \mathbf{X}^{\prime} \mathbf{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y} \tag{7}
\end{equation*}
$$

This estimator equals the $\hat{\beta}_{I V}$ in the just-identified case. The term 2SLS arises because the estimator can be computed in two steps. First, estimate by OLS the first-stage regression given by the reduced form equation in (3) and second, estimate by OLS the structural equation (1) with endogenous regressors replaced by their predictions from the first step.

EXAMPLE 1 (2SLS for Education in a wage equation)

We use data in the example above to perform a two-stage least squares estimation. Now, we can take advantage of the fact that we also have data on father's education (feduc) and use it as an instrument for educ with the same argument as above. Assuming that meduc and feduc are exogenous in the log (wage) equation we can check that the coefficients for meduc and feduc are statistically different from zero in the reduced form equation to proceed with the 2SLS estimation.

Instrumental variables (2SLS) regression							
Source	SS	df	MS		Number of obs	$=722$	
					F (4, 717)	$=$	23.60
Model	7.62622488	41.9	655622		Prob > F	$=$	0.0000
Residual	119.185706	717.16	28321		R -squared	$=$	0.0601
					Adj R-squared	$=$	0.0549
Total	126.811931	721	758834		Root MSE	$=$. 40771
lwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	In	terval]
educ	. 1448957	. 0203597	7.12	0.000	. 1049238		1848675
exper	.0391087	. 0076469	5.11	0.000	. 0240956		0541218
age	-. 007241	. 0074878	-0.97	0.334	-. 0219417		0074596
married	. 2027841	. 0484987	4.18	0.000	. 1075677		2980006
_cons	4.435099	. 2561893	17.31	0.000	3.932128		4.93807
Instrumented: educ							
Instruments:	exper age married meduc feduc						

The 2SLS estimate of the returns to education is about 14.5% and it is statistically significant.

Generalized Method of Moments (GMM)

The generalized method of moments is a generalization of the OLS and IV estimators. GMM is based on moment functions that depend on observable random variables and unknown parameters, and that have zero expectation in the population when evaluated at the true parameters. Its general expression is

$$
\begin{equation*}
\hat{\beta}_{G M M}=\left(\mathbf{X}^{\prime} \mathbf{Z X W} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\prime} \mathbf{y} \tag{8}
\end{equation*}
$$

where \mathbf{W} is any full-rank symmetric-weighting matrix. ${ }^{2}$ In general, the weights in \mathbf{W} will depend on data, on unknown parameters and on the shape on the moment function.

Testing for endogeneity and overidentifying restriction

Testing for endogeneity

In the previous examples we treated the variable educ as an endogenous variable but if instead, the variable is exogenous, the IV estimators (IV, 2SLS and GMM) are still consistent but they can be much less efficient than the OLS estimator. For this reason, it is important to test for endogeneity.

The Hausman test provides a way to test whether a regressor is endogenous. If there is little difference between OLS and 2SLS estimators, then there is no need to instrument and we conclude that the regressor is exogenous. If instead, there is considerable difference, then we need to instrument and the regressor is endogenous. In the case of just one potentially endogenous regressor with a coefficient denoted by β, the Hausman test statistic

$$
\begin{equation*}
T_{H}=\frac{\left(\widehat{\beta}_{2 S L S}-\widehat{\beta}_{O L S}\right)^{2}}{\widehat{V}\left(\widehat{\beta}_{2 S L S}\right)-\widehat{V}\left(\widehat{\beta}_{O L S}\right)} \tag{9}
\end{equation*}
$$

is $\chi^{2}(1)$ distributed under the null hypothesis that the regressor is exogenous. Note that $\hat{V}\left(\hat{\beta}_{2 S L S}\right)$ and $\hat{V}\left(\hat{\beta}_{o L S}\right)$ are the estimated variances of the 2SLS and OLS estimates respectively. When $\hat{V}\left(\hat{\beta}_{2 S L S}\right)<\hat{V}\left(\hat{\beta}_{O L S}\right)$ the results are hard to interpret.

Another convenient way of testing the same hypothesis is to estimate the following regression by OLS:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{K} x_{K}+\delta \hat{r}+u \tag{10}
\end{equation*}
$$

where \hat{r} is the residual from the reduced form equation for x_{K} and do a simple t-test to see whether the estimate of δ is significantly different from zero. If $\hat{\delta}$ is significantly different from zero then x_{K} is endogenous. We can always use this second approach.

When we have two potential endogenous regressors $\left(x_{K}, x_{K+1}\right)$ we can test for endogeneity in a similar way as above estimating the following equation:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{K} x_{K}+\beta_{K+1} x_{K+1}+\delta_{1} \hat{r}_{1}+\delta_{2} \hat{r}_{2}+u \tag{11}
\end{equation*}
$$

where \hat{r}_{1} is the residual from the reduced form equation for x_{K} and \hat{r}_{2} is the residual from the reduced form equation for x_{K+1}. Now, we can compute the joint F-test. If $\hat{\delta}_{1}$ and $\hat{\delta}_{2}$ are jointly and significantly different from zero then x_{K} and x_{K+1} are endogenous,

[^1]Note here that endogeneity tests are based on the assumption that the instruments, z_{1}, z_{2}, \ldots are valid instruments for the endogenous regressors.

EXAMPLE 1 (Testing the endogeneity of the variable education in a wage equation)

Using the previous estimations we can proceed with the Hausman test:

$$
T_{H}=\frac{(0.1448-0.07395)^{2}}{0.0203597^{2}-0.0067421^{2}}=13.602
$$

The result suggests that we reject the null hypothesis that the regressor is exogenous at 1% significance level. ${ }^{3}$

Also, we can apply the alternative test for endogeneity:

The result gives us the same conclusion as before, education is an endogenous variable in the wage equation. Hence, we need to implement an instrumental variables estimator.

Testing for overidentifying restrictions

When we have more instruments than we need to identify an equation, we can test whether the instruments are valid in the sense that they are uncorrelated with u in equation (1). To perform this test we estimate equation (1) by 2SLS or IV and obtain the estimated residuals \widehat{u}. We then regress \hat{u} on all the exogenous variables (including the instruments) and obtain the R-squared of the regression. Under the null hypothesis that the instruments are uncorrelated with u in which case they are valid instruments and the statistic $\mathrm{N} \times \mathrm{R}$ -

[^2]squared follows a $\chi^{2}(\mathrm{r})$ distribution. ${ }^{4}$ Stata performs this test directly with the post/estimation command estat overid.

EXAMPLE 1 (Testing overidentifying restrictions in a wage equation)


```
. display 0.0001*722
.0722
```

We will not reject the null hypothesis that the instruments are valid since $\chi^{2}(1)=6.635$ at 0.01 probability
When performing the test directly in Stata the results suggest exactly the same, which confirm the validity of the two instruments used.

```
. quietly ivregress 2sls lwage exper age married ( educ = meduc feduc )
- estat overid
    Tests of overidentifying restrictions:
    Sargan (score) chi2(1) = .084471 (p = 0.7713)
    Basmann chi2(1) = .083779 (p = 0.7722)
```

[^3]
Weak instruments

Recall the two conditions for the instrumental variables to be valid: (IV1) uncorrelated with u but (IV2) partially and sufficiently strongly correlated with x_{K}, once the other independent variables are controlled for. We already indicate that it is necessary to check the second condition to determine the validity of the instrument. Imagine we have now more than one instrumental variable as in equation (6). We can estimate this reduced form equation (6) by OLS and obtain the F-statistic on the estimators of the instrumental variables: $H_{0}=\theta_{1}=\cdots=\theta_{M}=0$. If the F-statistic is small, then we conclude that the instrumental variables are weak. When the instrumental variables are weak, the IV or 2SLS estimators could be inconsistent or have large standard errors.

A rule of thumb to find weak instruments suggests that the F-statistic of the instrumental variables in (6) should be larger than 10 to ensure that the maximum bias in IV estimators be less than 10%.

EXAMPLE 1 (Testing for weak instruments in a wage equation)

```
. quietly regress educ exper age married meduc feduc
. test (meduc=0) (feduc=0)
( 1) meduc = 0
( 2) feduc = 0
    F( 2, 716) = 65.24
            Prob > F = 0.0000
```

The joint test on the instrumental variables meduc and feduc indicates that the instruments are not weak.

EXAMPLE 1 (Instrumental variables for Education in a wage equation using ivreg2)

The same exercise can be done using the ivreg2 command. This command is similar to ivregress but provides additional estimators and statistics. When specifying the option "first", the first stage regressions are shown and some tests are performed directly. The first tests displayed are useful to determine the weakness of the instruments. The partial R-squared measures the squared-partial correlation between the excluded instruments and the endogenous regressor in question. As a rule of thumb, if the first-stage regression yields a large value of the standard R -squared and a small value of the partial R -squared, you should conclude that the instruments lack sufficient relevance to explain the endogenous regressor. In this case, the partial Rsquared is 0.1542 , which do not cast doubts about the strength of the instruments. This combined with an Fstatistic higher than 10 , allows us to conclude that the instruments are not weak.

Another test displayed with the "first" option is the underidentification test. The underidentification test is a test of whether the equation is identified, i.e., that the excluded instruments are "relevant", meaning correlated with the endogenous regressors. The test is essentially a test of the rank of a matrix: under the null hypothesis that the equation is underidentified, the matrix of reduced form coefficients on the L1 excluded instruments has rank=K1-1 where K1=number of endogenous regressors. Under the null, the statistic is distributed as a chi-squared with degrees of freedom=(L1-K1+1). A rejection of the null indicates that the matrix is full column rank, i.e., the model is identified. In this case, we reject the null hypothesis.

Included instruments: exper age married meduc feduc
Partial R-squared of excluded instruments: 0.1542
Test of excluded instruments:
F (2, 716) $=65.24$

Prob $>\mathrm{F}=0.0000$

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

			Number of obs $=$		722
			F (4, 717)		23.60
			Prob > F		0.0000
Total (centered) SS		126.8119312	Centered R2		0.0601
Total (uncentered) SS		33511.33726	Uncentered R2		0.9964
Residual SS		119.1857064	Root MSE		. 4063

Instrumented: educ
10
Included instruments: exper age married
Excluded instruments: meduc feduc

EXERCISE 1

Consider estimating the effect of personal computer ownership, as represented by a binary variable, PC, on college GPA, colGPA. With data on SAT scores and high school GPA you postulate the model

$$
\operatorname{colGPA}=\beta_{0}+\beta_{1} h s G P A+\beta_{2} S A T+\beta_{3} P C+u
$$

a) Why might u and $P C$ be positively correlated?
b) If the given equation is estimated by OLS using a random sample of college students, is $\hat{\beta}_{3}$ likely to have an upward or downward bias?
c) What are some variables that might be good proxies for unobservables in u that are correlated with $P C$?

EXERCISE 2

Consider the following model to estimate the effects of several variables, including cigarette smoking, on the weight of newborns:

$$
\log (b w g h t)=\beta_{0}+\beta_{1} \text { male }+\beta_{2} \text { parity }+\beta_{3} \log (\text { faminc })+\beta_{4} p a c k s+u
$$

where male is a binary variable indicator equal to one if the child is male; parity is the birth order of this child; faminc is family income; and packs is the average number of packs of cigarettes smoked per day during pregnancy.
a) Why might you expect packs to be correlated with u ?
b) Suppose that you have data on average cigarette price in each woman's state of residence. Discuss whether this information is likely to satisfy the properties of a good instrumental variable for packs.
c) Use the data in BWGHT.RAW ("use http://fmwww.bc.edu/ec-p/data/wooldridge/bwght") to estimate the equation above. First use OLS. Then, use 2SLS, where cigprice is an instrument for packs. Discuss any important differences in the OLS and the 2SLS estimates.
d) Estimate the reduced form for packs. What do you conclude about identification of the equation above using cigprice as an instrument for packs? What bearing does this conclusion have on your answer from part c ?

EXERCISE 3

Use the CARD.RAW ("use http://fmwww.bc.edu/ec-p/data/wooldridge/card") for this problem.
a) Estimate a log (wage) equation by OLS with educ , exper, exper ${ }^{2}$, black, south, smsa, reg661 through reg668 and smsa66 as explanatory variables.
b) Estimate a reduced form equation for educ (years of education) containing all explanatory variables from part a and the dummy variable nearc4 (if individual grew up in vicinity of 4-year college). Do educ and nearc 4 have a practically and statistically significant partial correlation?
c) Estimate the log (wage) equation by IV, using nearc4 as an instrument for educ. Compare the 95\% confidence interval for the return of education with that obtained in part a
d) Now use nearc2 (if individual grew up in vicinity of 2-year college) along with nearc4 as instruments for educ. First estimate the reduced form for educ, and comment on whether nearc2 or nearc4 is stronger related to educ. How do the 2SLS estimates compare with the earlier estimates?

[^0]: ${ }^{1}$ Note that any row vector of \mathbf{Z} is a $1 \mathrm{x} K$ vector of the form $\mathbf{z} \equiv\left(1, x_{2}, x_{3}, \ldots, x_{K-1}, z_{1}\right)$

[^1]: ${ }^{2}$ A matrix is full rank if all its rows are linearly independent and all its columns are linearly independent.

[^2]: ${ }^{3} \chi^{2}(1)=6.635$ at 0.01 probability.

[^3]: ${ }^{4} \mathrm{r}$ represents the degrees of freedom and equals the number of overidentifying restrictions.

