Using Global Static CGE to Assess the Effects of Climate Volatility

Amer Ahmed, World Bank

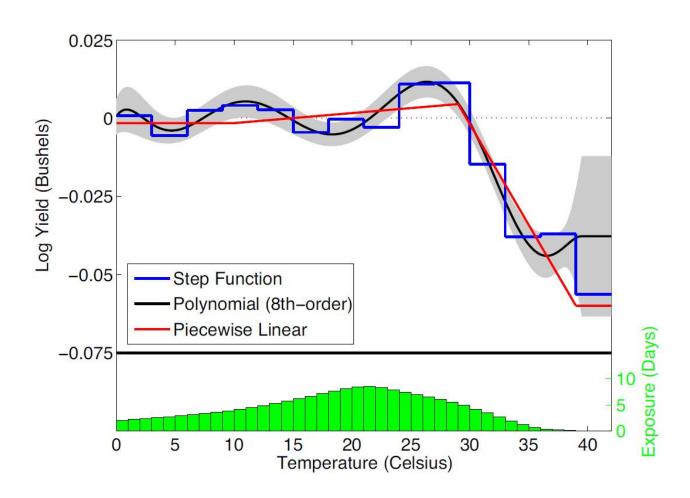
AGRODEP Workshop on Analytical Tools for Climate Change Analysis

June 6-7, 2011 • Dakar, Senegal

Please check the latest version of this presentation on: http://agrodep.cgxchange.org/first-annual-workshop

Using Global Static CGE to Assess the Effects of Climate Volatility

Amer Ahmed World Bank June 7, 2011


AGRODEP Members' Meeting and Workshop

Dakar, Senegal

Objectives

- Motivation: climate volatility, agricultural variability, & poverty
- Why CGE?
 - GE effects
 - Mechanisms that drive poverty impacts
- Implications of simulation design
- Illustrations from recent research

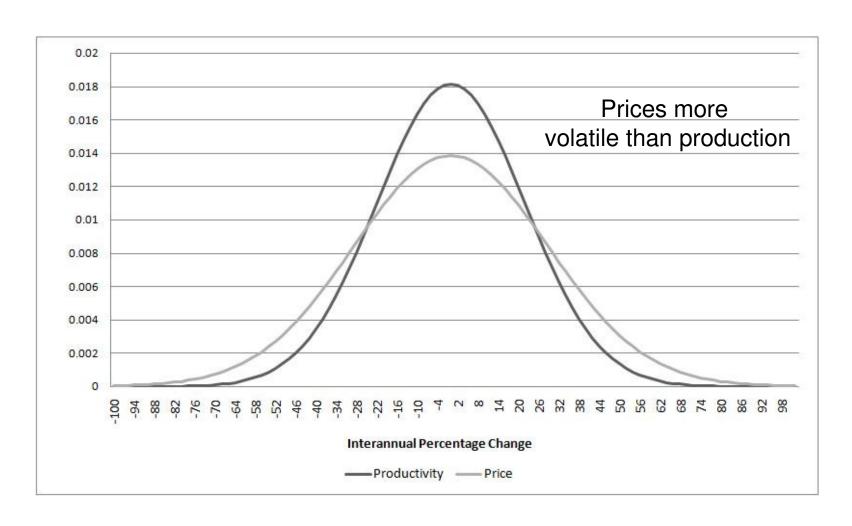
US Maize Yield Response to Temperature

Changing Climate Volatility

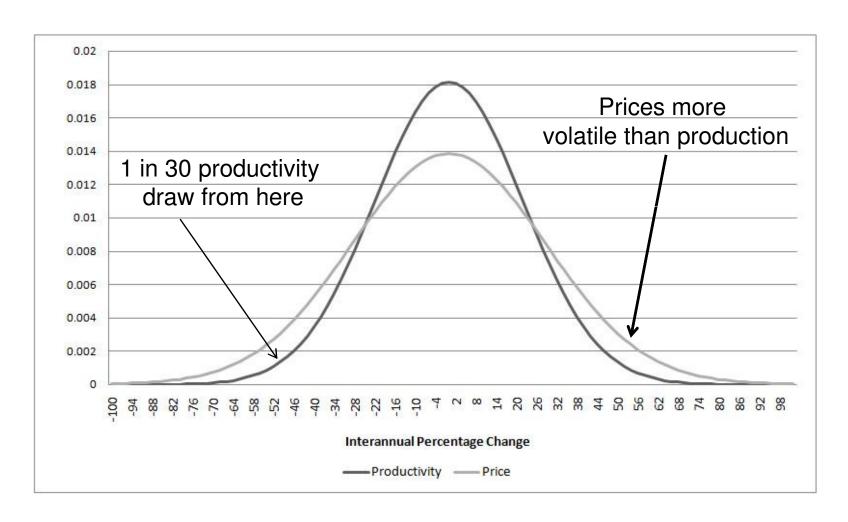
- Extreme outcomes may be particularly important for agriculture (White et al, 2006; Mendelsohn et al, 2007)
- Climate volatility is already changing (Easterling et al, 2000)
 - Higher temperature and precipitation extremes in the future (IPCC, 2007)

Implications for Poverty

- Extreme climate events will reduce agricultural output in the tropics and subtropics (Lobell et al, 2008; Battisti and Naylor, 2009)
 - Food insecurity
- Food insecurity influenced by forces that constrain people's access to food, not just availability (Sen, 1981)
- Income & price effects
 - 100 million additional poor due to global food price crisis between 2005-2008 (Ivanic & Martin, 2009)


Income Effects

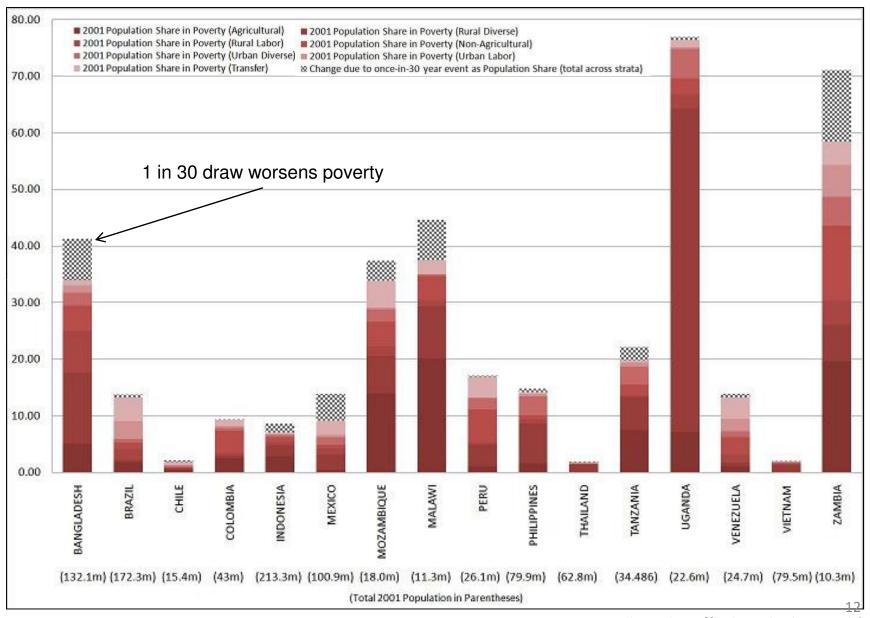
- Changes to household income depend on sources of income
- For many rural poor, main endowment is unskilled labor
- Agriculture is unskilled labor intensive
 - If output expands, unskilled wages rise; opposite for contraction
- Ambiguous impact of agricultural commodity price rise on non-farm rural households
 - depends on earnings diversification, impacts on farm factor returns, and unskilled wages


Price Effects

- Higher crop prices hurt all households, but hurt the poor relatively more due to large food budget share
- Lower crop prices may reduce incomes of rural net-sellers of crops
- Recent experience: 100 million additional poor due to global food price crisis between 2005-2008 (Ivanic & Martin, 2009)

Historical Volatility* in Grains Production and Prices in Tanzania

Historical Volatility* in Grains Production and Prices in Tanzania


Computational Framework

- GTAP model used to elicit national price and earnings impacts of productivity shocks:
 - land use by Agro-Ecological Zone
 - factor market segmentation
- Micro-simulation module to evaluate household-level impacts at poverty line in 7 population strata across 16 countries in Asia, Latin America and Africa
- Survey data:
 - Estimate earnings shares and density around poverty line
 - Use estimated consumer demand system to predict consumption changes at poverty line
 - Estimate change in stratum poverty due to combination of factor earnings and consumption impacts
 - Combine into estimate of national poverty using shares of strata in national poverty headcount

Implications of Simulation Design

- What are we shocking?
- Time horizon of simulation
 - Long run vs short run
 - Factor market mobility
 - Closure (response of capital, technology)
- What kind of farmer behavior is characterized?
 - Ability to adapt
- Shocking one country or multiple?
- Sensitivity analysis or forecasting?

Impact on Poverty Rates of 1 in 30 Climate Extreme

Source: Ahmed, Diffenbaugh, & Hertel (2009)

$\%\Delta$ in Poverty by Household Stratum due to 1 in 30 Climate Extreme

Socio-Economic Strata

				•••••••	0. 00.		
		Non-	Urban	Rural		Urban	Rural
	Agricultural	Agricultural	Labor	Labor	Transfer	Diverse	Diverse
Bangladesh	32.1	<i>37.8</i>	30.7	11.1	0.8	29.5	17.2
Brazil	0.1	4.1	5.5	6.2	1.0	9.6	7.0
Chile	7.7	13.8	12.7	9.5	14.7	12.6	14.9
Colombia	0.1	0.4	1.0	1.0	0.6	0.6	0.5
Indonesia	29.5	12.1	19.2	23.9	5.9	17.9	19.0
Mexico	52.2	36.7	95.4	<i>52.1</i>	61.8	37.4	43.2
Mozambique	4.3	<i>15.3</i>	16.2	12.4	7.2	26.6	16.0
Malawi	<i>15.8</i>	9.0	110.5	91.0	11.1	30.8	23.0
Peru	2.4	1.9	3.6	2.6	0.5	1.5	1.4
Philippines	-17.7	10.2	32.3	<i>25.9</i>	8.5	6.0	3.8
Thailand	4.9	5.8	7.1	5.8	6.4	5.6	5.8
Tanzania	7.2	11.0	14.9	5.3	6.6	21.3	11.9
Uganda	-0.1	1.6	16.4	2.9	0.1	1.0	0.6
Venezuela	4.0	5.1	12.1	10.1	0.0	7.2	6.6
Vietnam	5.1	7.0	0.0	0.0	3.9	6.3	6.4
Zambia	0.0	17.7	102.0	32.5	10.9	41.1	10.6
Average	9.2	11.8	30.0	18.3	8.8	16.0	11.7

Tanzania Specific Analysis: Framework

CLIMATE ANALYSIS

STATISTICAL ESTIMATION OF GRAIN YIELDS

temperature & precipitation, from General Circulation Models

GRAIN YIELD PREDICTIONS

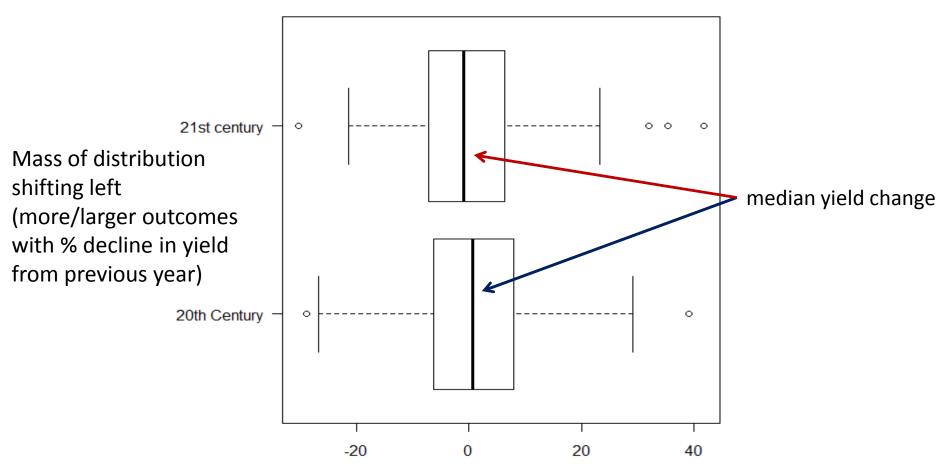
Predicted changes in crop output, current + future climate

GLOBAL ÉCONOMIC SIMULATION MODEL

changes in prices & wages from simulation results

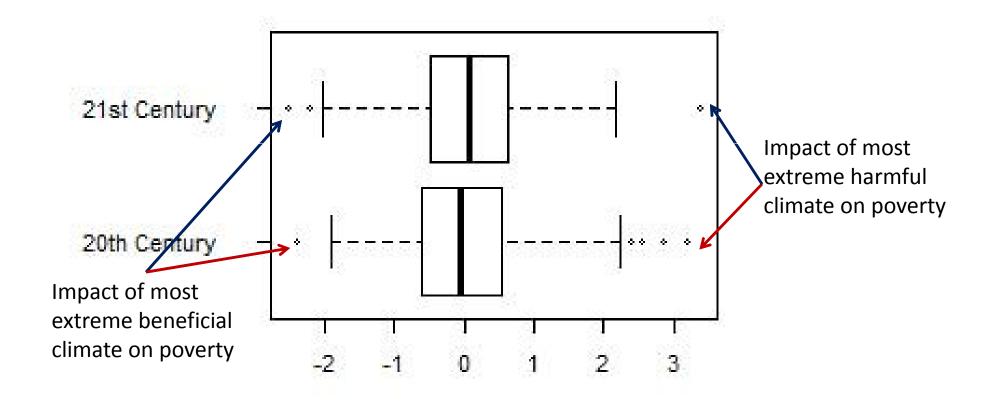
HOUSEHOLD MODEL

ECONOMIC IMPACTS


POVERTY IMPACTS

Ahmed et al (2011)

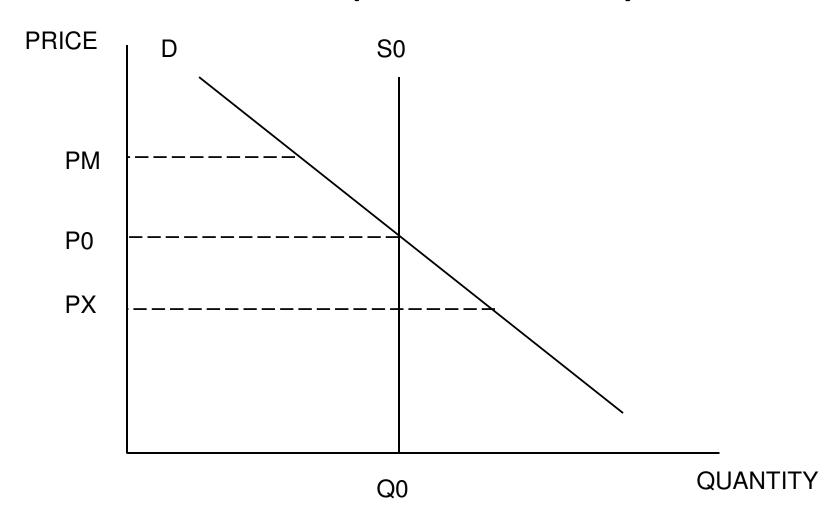
Sensitivity of Tanzanian Poverty to Climate Volatility


- Statistical analysis using data from 17 administrative regions: 1992-2005
 - Maize, rice, and sorghum yields (tonnes/ha)
 - Temperature (growing season mean in degrees C)
 - Precipitation (growing season mean in mm/month)
- Predictions using data from 22 global climate models
 - Yield variability increases in 10 cases out of 22
- Use yield equation to translate historical and future climate into output changes

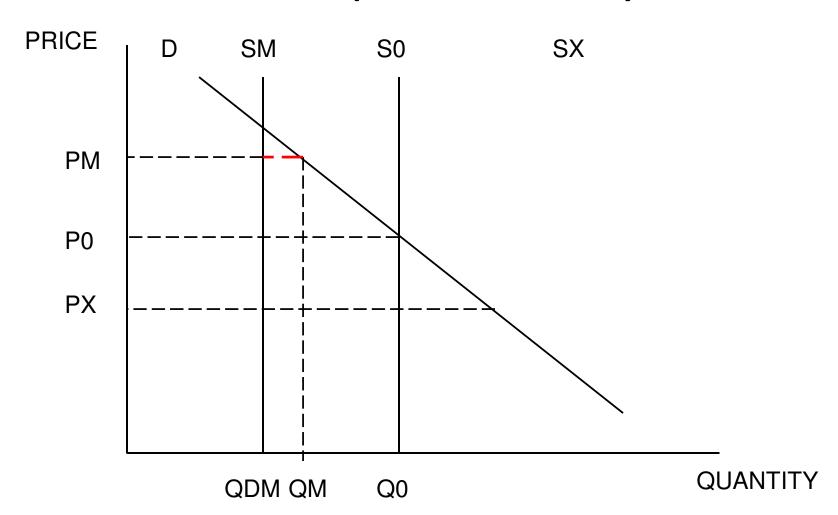
Distribution of Interannual % Changes in Tanzanian Grains Yield due to Climate

Outcomes within box represent 75% of all predicted outcomes

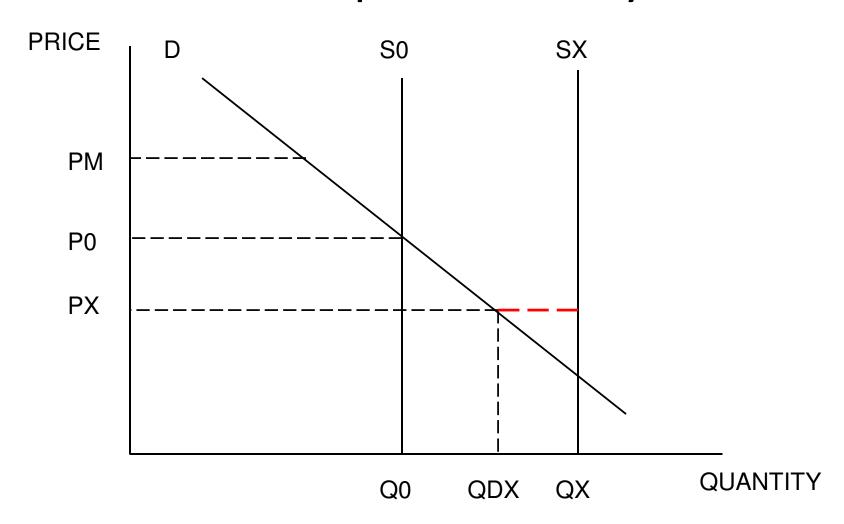
Sensitivity of Poverty in Tanzania to Climate Outcomes: Distribution of % Point Changes in National Poverty Rate

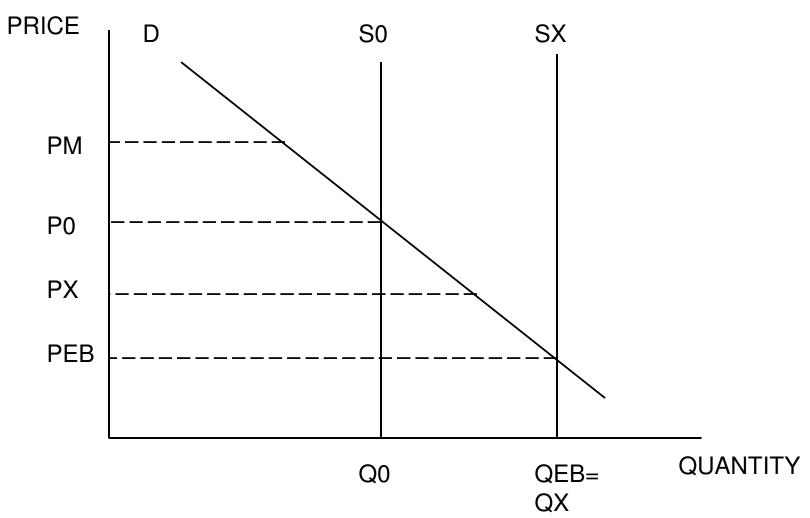


Outcomes within box represent 75% of all predicted outcomes


Illustration: Examining Trade Policy

- Concerns about greater trade & food security
- World price instability as a source of domestic price instability, price transmission
 - e.g. Special Safeguard Mechanisms
- Export bans during food price crisis 2005-2008
 - May block supply responses to higher international prices in long run (Mitra & Josling, 2009)
 - Higher price volatility
- Tanzania had export ban on maize & other grains


SR Supply Shocks and Price Changes: Small Open Economy


SR Supply Shocks and Price Changes: Small Open Economy

SR Supply Shocks and Price Changes: Small Open Economy

SR Supply Shocks and Price Changes: Export Ban

Export Ban on Maize Depresses Tanzanian Maize Prices

Year	Direction of Tanzania's Production Deviation from Trend	Under 2001 World Trade Policy Framework	Under 2001 World Trade Policy Framework + Export Ban in Tanzania	Additional Effect of Export Ban (Regime 2 - Regime 1)
		I	II	III
1995	Tonzonio	-22.56	-24.97	-2.41
1971	Tanzania +	-21.11	-22.22	-1.11
1980	Tanzania 0	0.67	0.45	-0.22
1982	Tanzania -	27.67	27.67	0.00
1983	IdiiZdiiid -	42.19	41.97	-0.23

General Take Homes

- Agriculture a key linkage between climate volatility & poverty vulnerability
- Income and price effects determine who is affected
- Future impacts are likely to be complex across countries, with great uncertainty in climate predictions
 - Lessons to be learned from historical volatility
- Need to consider climate interactions with existing policies (e.g. trade policies) to exacerbate impacts