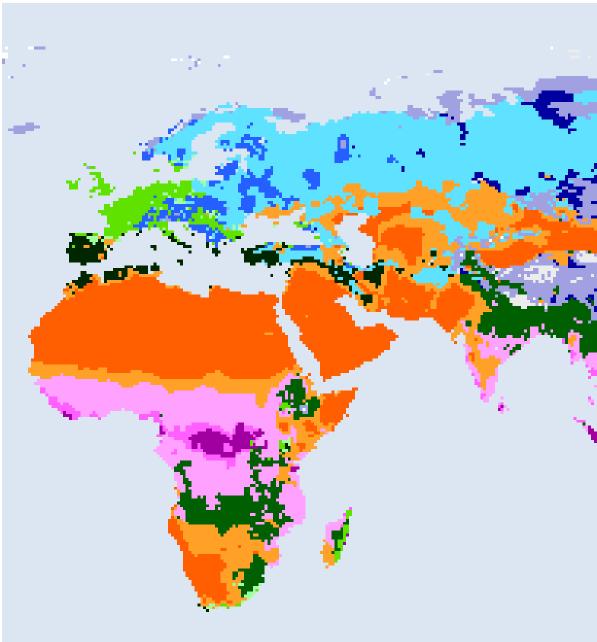
Simulating the Impact of Climate Change and Adaptation Strategies on Farm Productivity and Income: A Bioeconomic Analysis

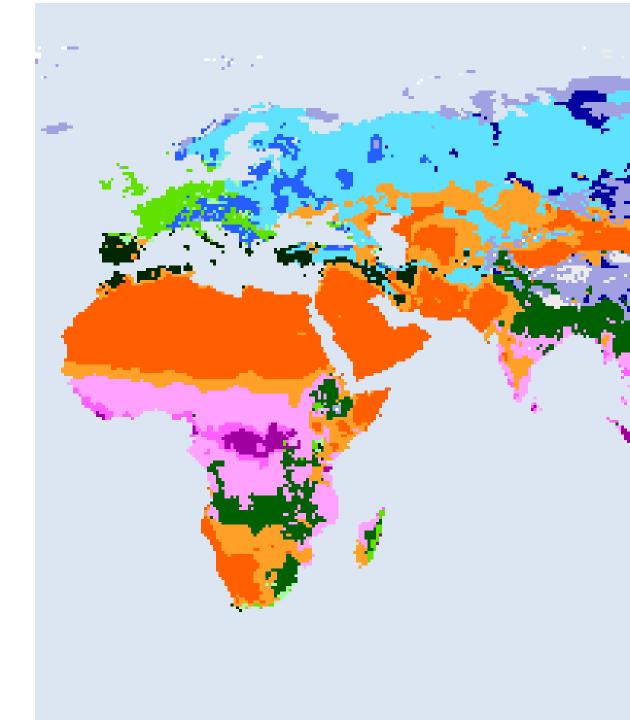

Presented by: Ismael Fofana,IFPRI

AGRODEP Workshop on Analytical Tools for Climate Change Analysis

June 6-7, 2011 • Dakar, Senegal

Please check the latest version of this presentation on: <u>http://agrodep.cgxchange.org/first-annual-workshop</u>

Simulating the Impact of Climate Change and Adaptation Strategies on Farm Productivity and Income: A Bioeconomic Analysis


Ismaël Fofana

International Food Policy Research Institute West and Central Africa

Dakar, Senegal

1. Issue

- 2. Methodology
- 3. Results

1. Issue

- Our climate is changing; strong evidences on rising temperature, sea-levels, frequency and severity of droughts and floods, ...
- More confidence on IPCC's near-term projections

IPCC projected global average warming until 2100 under various scenarios
--

	Economic growth	Environmental sustainability
Homogeneous world	A1 {A1FI; A1T; A1B}: Rapid technological change and economic growth [1.4 - 6.4 °C]	B1 : Economic structures toward a service and information economy [1.1 - 2.9 °C]
Heterogeneous world	A2: Slow technological change and economic development [2.0 - 5.4 °C]	B2: Local solutions to economic, social, and environmental sustainability [1.4 - 3.8 °C]

1. Issue (cont.)

- Agricultural sector is highly climate sensitive
- Climate defines production areas for crops
- Climate's effect on yield is important

<u>Objective</u>: Contribute to better understand the impact of climate change on agriculture and food security in Africa

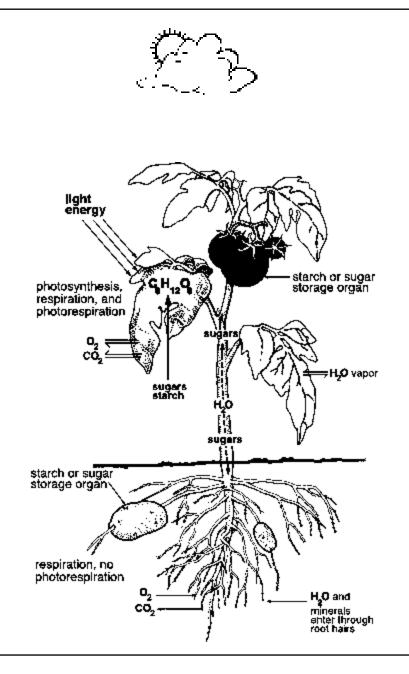
Analysis at the farm level is a crucial step before moving into a large and general analysis

2. Methodology

- Building of climate scenarios upon changes in temperature, precipitation, and carbon dioxide concentration in the atmosphere
- Performing climate sensitivity tests with the climate scenarios using a farm model
 - Farm model combines a crop systems model and an economic model run sequentially (Bioeconomic model)
 - Crop systems model: CROPSYST
 - Economic model: Linear optimization

CropSyst or Cropping System

LOCATION


- WEATHER
- Storms
- Evapotranspiration
- Freezing climates
- Wind

CROP

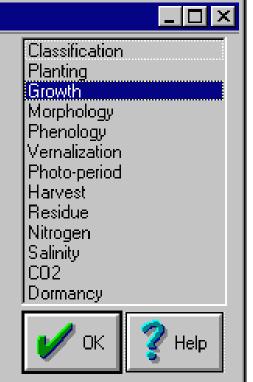
- Classification
- Planting
- <u>Growth</u>
- Morphology
- Phenology
- Vernalization
- Photoperiod
- Harvest
- Residue
- Nitrogen
- Salinity
- CO2
- Dormancy

SOIL

- Leaching
- Runoff
- RUSLE
- Volatilization
- <u>Texture</u>
- Hydraulics

MANAGEMENT

- Harvest
- Irrigation
- Clipping
- Nitrogen
- Conservation
- Tillage

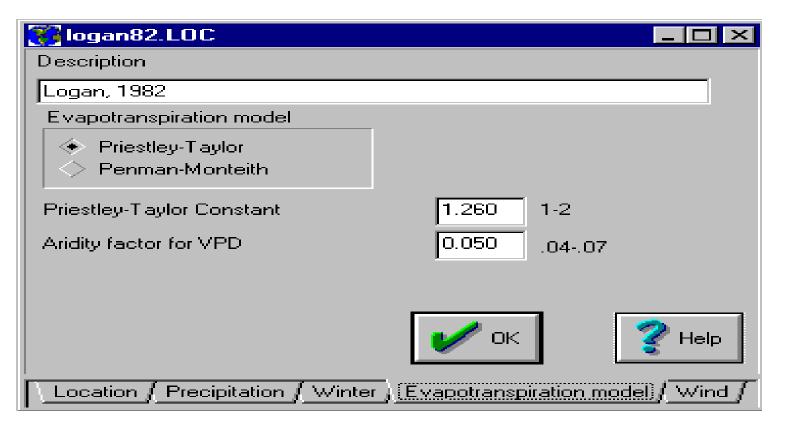

Crop growth

sprngwht.crp

Above ground biomass-transpiration coefficient

- Light to above ground biomass conversion
- At/Pt ratio limit to leaf area growth
- At/Pt ratio limit to root growth
- Temperature below which growth rate is reduced
- Thermal time to cease temperature limitation
- Maximum water uptake
- Critical leaf water potential
- Wilting leaf water potential

4.70	kPa kg/m³
3.00	g/MJ
0.95	0-1
0.50	0-1
10.00	°C
1500	°C-day
13.00	mm/day
-1500.0	J/kg
-2200.0	J/kg



Soil texture

e logan82.sil						
Last	Thickness	sand	clay	silt	Layer bypass	
layer	m	%	%	%	0-1	
O 1	0.100	60.00	25.00	15.00	0.500	<- Texture triangle
O 2	0.100	45.00	30.00	25.00	0.500	<- Texture triangle
O 3	0.250	45.00	35.00	20.00	0.500	<- Texture triangle
O 4	0.300	50.00	20.00	30.00	0.500	<- Texture triangle
05	0.300	52.00	23.00	25.00	0.500	<- Texture triangle
• 6	0.400	60.00	20.00	20.00	0.500	<- Texture triangle
O 7	0.000	60.00	20.00	20.00	0.000	<- Texture triangle
08	0.000	60.00	20.00	20.00	0.000	<- Texture triangle
O 9	0.000	60.00	20.00	20.00	0.000	<- Texture triangle
O 10	0.000	60.00	20.00	20.00	0.000	<- Texture triangle
O 11	0.000	60.00	20.00	20.00	0.000	<- Texture triangle
O 12	1.000	60.00	20.00	20.00	0.000	<- Texture triangle
Default Estimated from texture Computed from user specified values User specified User specified						
Description Texture Hydraulic properties						

Evapotranspiration model

Irrigation

🌉 Manageme	ent file:C:\CropSyst\sam	ple\logan\5.MGT		_ 🗆 ×		
🔄 Automatic i	rrigation					
Maximum allowable depletion 0.500 0-1						
Depletion observation depth 1.00 m						
Net irrigation multiplier 1.00 0-2				0-2		
Maximum irr	igation application		20.00	mm		
Period	Starting date	0000/1/1				
	Ending date	0000/12/30				
Irrigation Delete	0000/6/9 Irrigation 26.100 0000/6/17 Irrigation 28.50 0000/6/23 Irrigation 30.40 0000/6/30 Irrigation 30.40 0000/7/7 Irrigation 34.400 0000/6/13 Irrigation 37.90	mm 0.000 kg NONE/m3 wa mm 0.000 kg NONE/m3 wa 0 mm 0.000 kg NONE/m3 w 0 mm 0.000 kg NONE/m3 w	ater vater vater vater ater vater			
OK KCancel V Help						
Harvest [Irrigation] Nitrogen [Mow, crop, clip, or prune [Conservation] Tillage operation]						

Hard wheat

(RL 39% + IL 16%)

[Crop+Location+Soil+Manage]

Fodder barley

(RL 2%) [Crop+Location+Soil+Manage]

Fava beans

(RL 2%) [Crop+Location+Soil+Manage]

SIMULATION CONTROLE

Rotation Soil profile Residue Nitrogen Runoff CO2 Validation

Soft wheat

(RL 4%) [Crop+Location+Soil+Manage]

Oat hay

(IL 8%) [Crop+Location+Soil+Manage]

Chickpeas

(RL 1%) [Crop+Location+Soil+Manage]

Simulation controle

🔢 Simulation file	:C:\CropSyst\sample\logan\n1log	82.SIM	_				
Description							
Logan, 1982, Mgn	nt 1 wheat						
Starting date	1982/Apr/01						
Ending date	1982/Aug/25						
Soil file	LOGAN82.SIL			Edit			
Location file	LOGAN82.LOC			Edit			
Report format	test.fmt <-None			Edit			
Infiltration model	Runoff model						
🔷 Cascade	🔷 No runoff	✓ Runtime graph Salinity					
📀 Finite differen	ce 🔷 SCS Curve number						
	 Numerical solution 	🔜 Rainfall intensity gener	ration				
Validation Simulation							
Simulation / Soil profile / Rotation / Residue / Nitrogen / CO2 /							

The Economic Model

Objective

$$\max_{L} \Omega = \sum_{c,m} (\pi_{c,m} \times T_{c,m}) \quad \text{with} \quad \pi_{c,m} = \left(\sum_{j} y_{c,m,j} \times \overline{p_{c,j}}\right) - \left(\sum_{i} q_{c,m,i} \times \overline{p_{c,i}}\right)$$

 $< T^{S}$

Constraints

Soil occupation:

$$\sum_{c}\sum_{m}T_{c,m}$$

Rotation:

$$\sum_{c}\sum_{m}T_{c,m}$$

$$S_{cc,mi} \leq S_{cf,mi}$$
 and

$$\overline{S}_{c}^{\min 5 \text{ years}} \leq S_{c} \leq \overline{S}_{c}^{\max 5 \text{ years}}$$

Water:

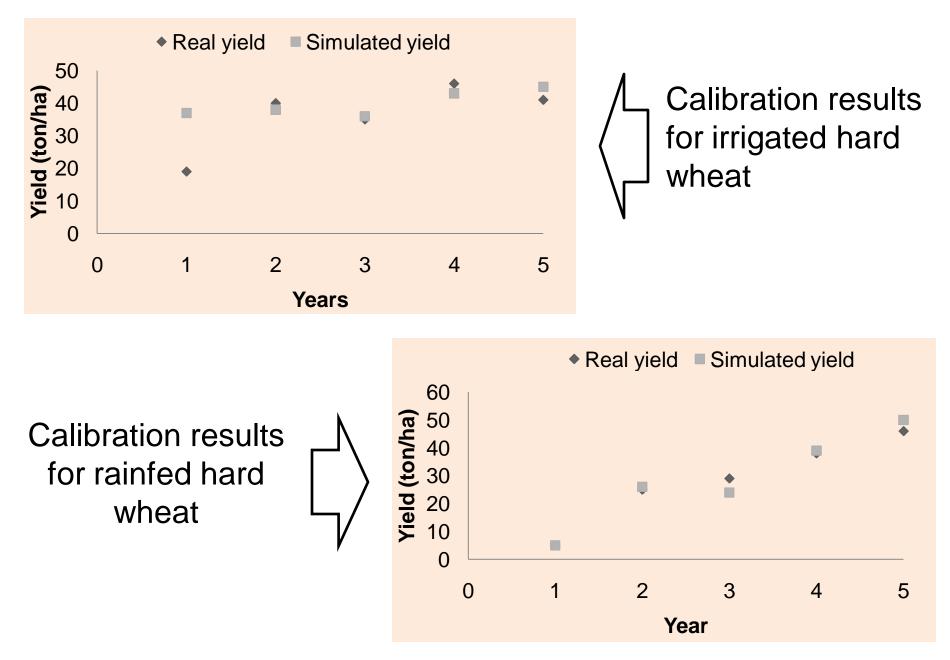
$$\sum_{c} W_{c,t} \leq \overline{W_t^s}$$

Animal food:

Surface allocated to barley fodder compensated for the change in supplies of animal food (stubbles)

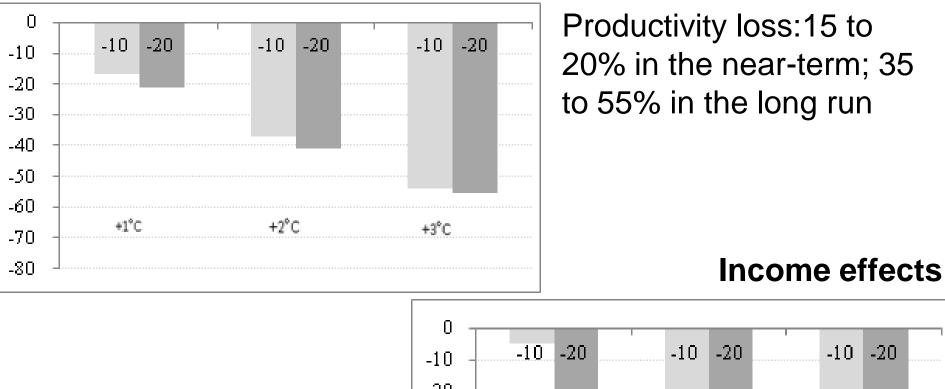
Hypotheses

- Rational decision making with gross margins the only variable influencing surface allocation
- Fixed products and factor prices (price taker)
- No constraint on the farm's access to other productive factors, e.g. labor and capital

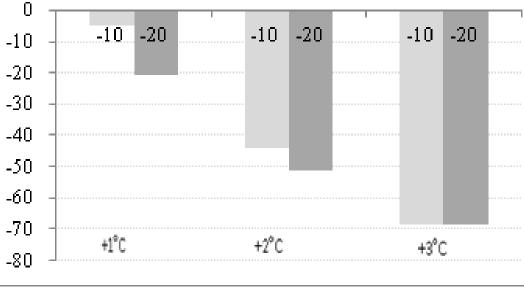

Hypotheses (cont.)

- Climate change is not associated directly with the appearance of weeds, diseases, and pests
- Climate change does not affect soil's physical and chemical characteristics
- Climate change does not affect Plant's basic physiological, morphological, and agronomic characteristics
- Tree crops are not seriously affected by climate change

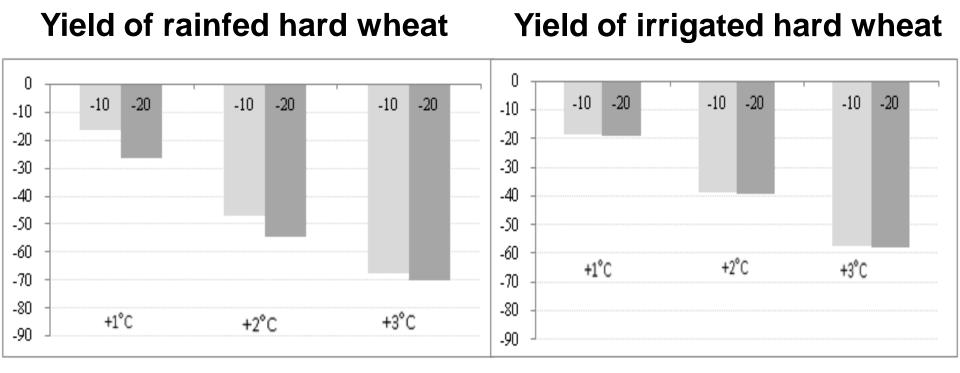
Hypotheses (cont.)


- The contribution of pastureland used to feed animals remained unchanged
- The capacity to ingest of animals and the quality of food are not modified with climate change
- Water requirements for animals do not significantly affect the availability for crops
- Water supply mostly comes from surface water and its availability is proportionally affected by the change in rainfall

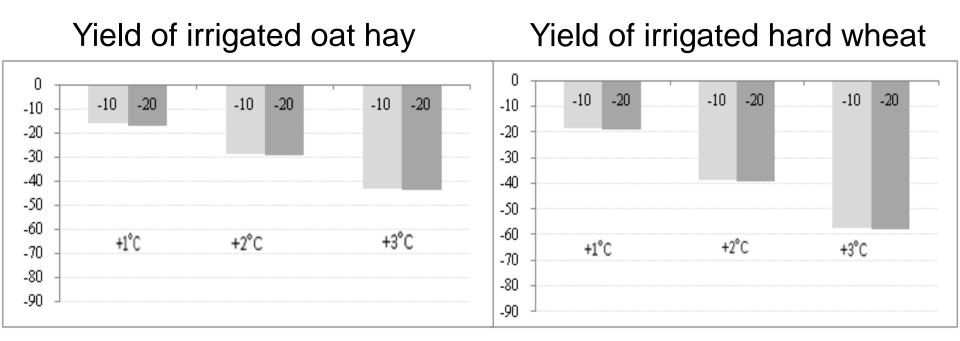
Validation



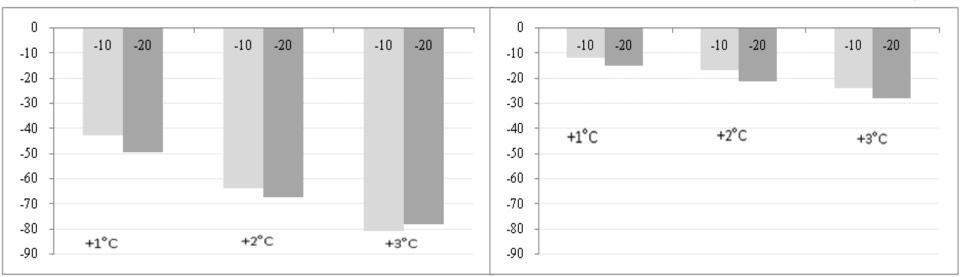
3. Results


Productivity effects

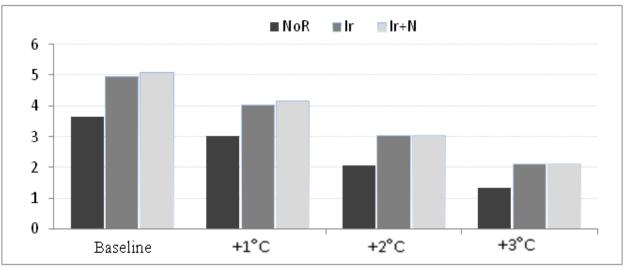
Income loss: 5 to 20% in the near-term; 45 to 70% in the long run



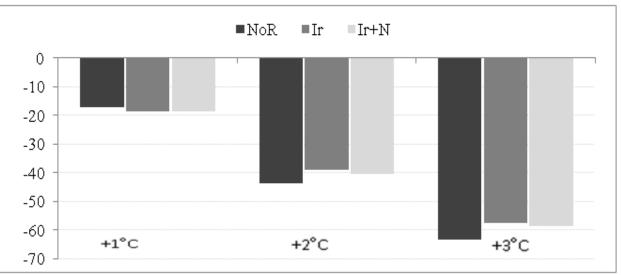
3. Results (cont.)


- Irrigated crops less affected than rainfed crops (with 10 percentage points of productivity gap)
- Precipitation-induced productivity gap lessens as the climate warms up

3. Results (cont.)


Yield of rainfed fava beans

Yield of rained fodder barley



3. Results (cont.)

Hard wheat yield (tons/ha)

Percentage variation of hard wheat yield

Compensation for the negative effects of climate change through irrigation is worthwhile only for a 1°C increase in temperature

Summary

- 1. Yield loss: 1°C ⇔ 15-20% ; 2°C to 3°C ⇔ 35-55%
- 2. Rev. loss: 1°C ⇔ 5-20% ; 2°C to 3°C ⇔ 45-70%
- 3. Irrigated crops less affected than rainfed crops
- 4. Precipitation-induced productivity gap lessen as the climate warms up
- 5. Some crops less affected than others
- 6. Irrigation, as an adaptation strategy, is worthwhile only for a 1°C increase in temperature

Thank you for your attention

More at <u>www.ifpri.org</u>