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Overview

We will discuss endogeneity in the unobserved effects model

Traditional endogeneity where some of the covariates are
correlated with the idiosyncratic shocks in the model

Endogeneity induced when some of the covariates are
correlated with the unobserved effect while others are not
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Overview

In most applied economic settings endogeneity is considered
the key hurdle for providing credible results

Controlling for endogeneity allows one to progress from make
statements about correlations to causation

Endogeneity can arise from omitted variables, measurement
error, sample selectivity, or self selection
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Single Equation Estimation

Consider our structural unobserved unobserved effects model

yit =Y ′1,itγ + x′1,itβ + ci + εit

=Zitδ + ci + εit (1)

where Y1,it are g1 endogenous variables and x1,it are k1

exogenous variables; Z = [Y1, X1]

We also have k2 > g1 additional instrumental variables, x2,it

Let xit = [x1,it, x2,it] (so that X = [X1, X2]) denote the
collection of all exogenous variables
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Single Equation Estimation

Endogeneity enters in the model when
E[εit|Zit, ci] 6= E[εit] = 0

Our instruments will satisfy the standard exogeneity condition
E[εit|Xit, ci] 6= E[εit] = 0

Notice that our focus at the moment is with correlation
between Y1 and ε, the unobserved effect will be controlled
through either the fixed or random effects framework
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Single Equation Estimation

Estimation in the Fixed Effects Framework

Suppose that we assume the fixed effects framework for our
structural unobserved effects model

Using the within transformation on (1) we have

Qyit = QZitδ +Qεit (2)

Using the instruments QXit, two stage least squares
estimation produces

δ̂W2SLS =
(
Z̃ ′PX̃ Z̃

)−1
Z̃ ′PX̃ ỹ (3)

where PX̃ = X̃(X̃ ′X̃)−1X̃ ′

This is nothing more than 2SLS except we use as instruments
X̃ instead of X
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Single Equation Estimation

Estimation in the Fixed Effects Framework

The reason for the transformation is that the correlation
between the fixed effects and the regressors needs to be
removed prior to controlling for the correlation between Y1

and X2

The variance-covariance matrix for δ̂W2SLS is

V ar(δ̂W2SLS) = σ2
ε

(
Z̃ ′PX̃ Z̃

)−1
(4)
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Single Equation Estimation

Between Estimation

An alternative set of instruments is PX, which constitutes
between estimation

Using the between transformation on (1) we have

Pyit = PZitδ + Pεit (5)

and two stage least squares estimation produces

δ̂B2SLS =
(
Z̄ ′PX̄ Z̄

)−1
Z̄ ′PX̄ ȳ (6)

where PX̄ = X̄(X̄ ′X̄)−1X̄ ′

The variance-covariance matrix for δ̂B2SLS is

V ar(δ̂B2SLS) = σ2
1

(
Z̄ ′PX̄ Z̄

)−1
(7)

where σ2
1 = Tσ2

c + σ2
ε
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Single Equation Estimation

Estimation in the Random Effects Framework

If we focus on the one-way error component model, in the
single equation setting our variance-covariance setting is
identical to the fully exogenous setting we discussed in
Lecture 4

Recall that GLS estimation of(
Qy
Py

)
=

(
QX
PX

)
β +

(
Qu
Pu

)
produced the one-way random effects estimator

Now consider the following system of 2NT observations(
X ′Qy
X ′Py

)
=

(
X ′QZ
X ′PZ

)
δ +

(
X ′Qu
X ′Pu

)
(8)
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Single Equation Estimation

Estimation in the Random Effects Framework

Given the validity of the instruments we have

E

(
X ′Qu
X ′Pu

)
= 0

and

V ar

(
X ′Qu
X ′Pu

)
=

[
σ2
εX
′QX 0
0 σ2

1X
′PX

]
(9)

Thus, GLS estimation will produce an unbiased and consistent
estimator of δ from (8)
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Single Equation Estimation

Estimation in the Random Effects Framework

Baltagi (1981) derived the error component two-stage least
squares estimator based on GLS estimation of (8):

δ̂EC2SLS =

[
Z̃ ′PX̃ Z̃

σ2
ε

+
Z̄ ′PX̄ Z̄

σ2
1

]−1[
Z̃ ′PX̃ ỹ

σ2
ε

+
Z̄ ′PX̄ ȳ

σ2
1

]
(10)

As in the fully exogenous case, the EC2SLS estimator can be
succinctly written as a matrix weighted average of the B2SLS
and FE2SLS estimators

δ̂EC2SLS = W1δ̂FE2SLS +W2δ̂B2SLS (11)
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Single Equation Estimation

Estimation in the Random Effects Framework

Baltagi (1981) suggests consistent estimators for σ2
ε and σ2

1

using the residual sum of squares from fixed effects two-stage
least squares estimation and between two-stage least squares

σ̂2
ε =

ε̂′FE2SLSQε̂FE2SLS

N(T − 1)
(12)

σ̂2
1 =

ε̂′B2SLSP ε̂B2SLS

N
(13)

where ε̂FE2SLS = y − Zδ̂FE2SLS and ε̂B2SLS = y − Zδ̂B2SLS
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Single Equation Estimation

Estimation in the Random Effects Framework

An alternative two-stage least squares estimator for the
one-way error component model is from Balestra and
Varadharajan-Krisnakumar (1987)

They suggest direct GLS estimation of (1) using Ω−1/2 with

instruments Ω−1/2X = X̃
σε

+ X̄
σ1

Their generalized two-stage least squares estimator is

δ̂G2SLS =
(
Z∗′PX∗Z∗

)−1
Z∗′PX∗y∗ (14)
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Single Equation Estimation

Estimation in the Random Effects Framework

Note that Baltagi’s (1981) EC2SLS estimator uses as
instruments [X̃, X̄] while Balestra and
Varadharajan-Krisnakumar’s (1987) G2SLS estimator uses as

instruments X̃
σε

+ X̄
σ1

How do these instrument sets differ?

[X̃, X̄] spans a linear space of dimension 2(k1 + k2) while
X̃
σε

+ X̄
σ1

spans a linear space of dimension k1 + k2, i.e. the
instrument set of Balestra and Varadharajan-Krisnakumar’s
(1987) is a subset of that of Baltagi (1981)

Baltagi and Li (1992) show that in the single equation setting,
these extra instruments do not yield reductions in the variance
covariance matrix of δ̂EC2SLS

Moreover, δ̂EC2SLS and δ̂G2SLS have the same asymptotic
variance-covariance matrix
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Single Equation Estimation

Estimation in the Random Effects Framework

However, the use of δ̂EC2SLS is still common because while
the variance-covariance matrix is asymptotically the same as
δ̂G2SLS in the single equation setting, in the full system
setting, Baltagi’s approach yields gains in efficiency

While not common, one should check estimates across the
two instrument sets to see if there are any perceptible
differences (there should not be except in perverse settings)
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Hausman-Taylor Estimation

Recall that the distinction between the random effects
framework and the fixed effects framework was an all or
nothing proposition

Either all of the regressors were independent from the
unobserved effect (random effects framework) or all regressors
were allowed to be correlated with the unobserved effect
(fixed effects framework)

There was no middle ground for estimation between these two
frameworks

Hausman and Taylor (1981) proposed an estimation strategy
that accomplished just this
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Hausman-Taylor Estimation

To begin, endogeneity will now exist in the unobserved effects
model through correlation amongst a subset of the regressors
and the unobserved effects

An example is a wage regression where work experience and
years of education are correlated with ability (lets assume it is
time constant), which is part of the unobserved effect

If we assume the fixed effects framework (which is feasible),
but only these two variables are correlated with ability, then
our structure is too strict
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Hausman-Taylor Estimation

The unobserved effects model of Hausman and Taylor (1981)
is

yit = x′itβ + z′iγ + ci + εit (15)

We further partition xit and zi into two pieces:
xit = [x1,it, x2,it] and zi = [z1,i, z2,i]

x1,it is k1 × 1, x2,it is k2 × 1, z1,i is g1 × 1 and z2,i is g2 × 1

We assume that x1 and z1 are exogenous with respect to both
c and ε while x2 and z2 are exogenous with respect to ε but
are endogenous with respect to c
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Hausman-Taylor Estimation

Notice that the within transformation would eliminate the
endogeneity of x2, but it also removes z1 and z2 from the
model

Hausman and Taylor’s (1981) approach is to control for
endogeneity without eliminating the time constant covariates
from the model

How do they do this?
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Hausman-Taylor Estimation

They suggest the standard random effects framework
transformation Ω−1/2 to (15) and then application of
two-stage least squares using as instruments

A =
[
X̃, PX1, Z1

]
(16)

Note that Z1 instruments itself (since it is exogenous), while
X1 and X2 are instrumented by X̃

Z2 is instrumented by PX1; given the panel structure X1 can
be used in two different dimensions as an instrument
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Hausman-Taylor Estimation

As it stands the Hausman and Taylor (1981) procedure is
infeasible given that the elements of Ω are unknown

To construct a feasible estimator Hausman and Taylor propose
the following approach

First, estimate the model in (15) using the within
transformation; this will naturally eliminate Z from the model
so γ is not identified
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Hausman-Taylor Estimation

Second, average the residuals from within estimation of (15)
across time

ûi· = ȳi· − X̄i·β̃ (17)

Third, perform two-stage least squares using instrument
matrix A = [X1, Z1] on the model

ûi· = Ziγ + ωi (18)

The estimator from this regression is

γ̂2SLS = (Z ′PAZ)−1Z ′PAû (19)
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Hausman-Taylor Estimation

These steps provide consistent estimates of β and γ, which
can be used to construct consistent estimates of σ2

c and σ2
ε

Consistent estimators of the variance components are

σ̂2
ε =

y′Q (I − PQX)Qy

N(T − 1)
(20)

and

σ̂2
1 =

(
y −Xβ̃ − Zγ̂2SLS

)′
P
(
y −Xβ̃ − Zγ̂2SLS

)
N

(21)
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Hausman-Taylor Estimation

Using the variance component estimates the original
unobserved effects model in (15) is transformed with Ω̂−1/2

and two-stage least squares is performed using instrument
matrix A from (16)

If k1 < g2 then the model is under-identified, β̂HT = β̃ and
γ̂HT does not exist

If k1 = g2 then the model is exactly-identified, β̂HT = β̃ and
γ̂HT = γ̂2SLS

If k1 > g2 then the model is over-identified, and β̂HT is more
efficient than β̃
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Hausman-Taylor Estimation

An over-identification test follows along the lines of the
Hausman test of the random effects framework

m̂ =
(
β̂HT − β̃

)′ (
var(β̃)− var(β̂HT )

)−1 (
β̂HT − β̃

)
(22)

This statistic has limiting distribution χ2
` where

` = min[k1 − g2, NT − (k1 + k2)]

This test allows one to discern if endogeneity in X2 is severe

Note that one only tests using β as the within transformation
cannot identify γ
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Hausman-Taylor Estimation

Both Amemiya and MaCurdy (1986) and Breusch, Mizon and
Schmidt (1989) proposed instrument sets that produce an
estimator more efficient than the original Hausman and Taylor
(1981) estimator

These instrument sets are more likely to ensure identification
of γ, however, they come at the expense of rapidly increasing
the instrument set based on the time dimension of the panel

Too many instruments can also be viewed negatively, even
though there are efficiency gains to be had

Further, there are additional exogeneity conditions that must
be satisfied with these expanded instrument sets; whereas
Hausman and Taylor (1981) only require that the time
averaged X1s are uncorrelated with c, the Amemiya and
MaCurdy (1986) instrument set requires conditional strict
exogeneity, a much stronger condition
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Highlights from this Lecture

Discussed accounting for endogeneity in the unobserved
effects model

Estimation covered both the fixed and random effects
framework

Beyond endogeneity with the idiosyncratic error term, also
discussed compromise between fixed and random effects
framework that can allow for time constant variables

Hausman-Taylor estimator allows endogeneity between
covariates and unobserved effect; can identify time constant
effects


	Overview
	Single Equation Estimation
	Estimation in the Fixed Effects Framework
	Between Estimation
	Estimation in the Random Effects Framework

	Hausman-Taylor Estimation
	Highlights from this Lecture

