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APDE

Overview

Cover estimation of the unobserved e↵ect model under the
random e↵ects framework

Develop intuition for how the generalized least squares
estimator works in this context

Learn about the between estimator

Discuss why strict exogeneity is needed for the covariates
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The Random E↵ects Framework

Our unobserved e↵ects model is identical for the random
e↵ects framework for the unobserved e↵ects model as with
the fixed e↵ects framework

yit = x

0
it� + ci + "it (1)

The key di↵erence is that in the random e↵ects framework,
we assume not only that E["it|xis, ci] = 0 for s = 1, . . . , T ,
but E[ci|xis] = E[ci] = 0 for s = 1, . . . , T

This last condition is the important distinction between the
random and fixed e↵ects framework, as we discussed in
Lecture 2
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The Random E↵ects Framework

The assumption of no correlation between the observable
covariates, xit and the unobservable, individual specific
heterogeneity, ci means that we do not need to control for its
presence when we estimate � in (1)

However, by placing ci in the error term we now have what is
known as a composed error or a one-way error component

Typically standard OLS estimation when there is a composed
error will not produce an estimator with appealing statistical
properties
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The Random E↵ects Framework

To see this more clearly rewrite the model in (1) as

yit = x

0
it� + uit (2)

where uit = ci + "it

Note that if E[""0|X] = �

2
INT , then E[uu0|X] 6= �

2
INT

This is because there is correlation between uit and uis, s 6= t

due to the presence of ci

In essence, we have introduced serial correlation amongst
some errors when we migrate from the fixed e↵ects framework
to the random e↵ects framework
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The Random E↵ects Framework

Given that our error no longer has constant variance and zero
serial correlation, OLS estimation of (2) will not produce an
e�cient estimator

However, we can derive the exact generalized least squares
estimator (GLS) since we know the form of the
variance-covariance structure

Recall that when the variance-covariance structure of the error
term from a model is ⌦, the GLS estimator is
�̂GLS =

�
X

0⌦�1
X

��1
X

0⌦�1
y

The OLS estimator for the random e↵ects framework of the
unobserved e↵ects model is nothing more than GLS
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The Random E↵ects Framework

To construct the GLS estimator for the random e↵ects
framework we need to determine the structure of the
variance-covariance matrix of u

Given that our individual, unobserved heterogeneity is in the
error term it will help to think of the cis as random variables
that come from some distribution

We will assume that ci ⇠ IID(0,�2
c )

To help distinguish the variance parameter for " we will also
assume that "it ⇠ IID(0,�2

")
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The Random E↵ects Framework

The Variance-Covariance Structure

To determine the structure of the variance-covariance of u we
need to determine the expectation of four di↵erent terms

Recall that the variance-covariance matrix is E[uu0|X] and
uu

0 contains elements of the form uitujs for s, t = 1, . . . , T
and i, j = 1, . . . , N

When i = j and s = t we have
E[u2it|X] = E[c2i ] + 2E[ci"it] + E["2it] = �

2
c + 0 + �

2
"

The middle term is zero since we assume that both c and "

are IID



APDE

The Random E↵ects Framework

The Variance-Covariance Structure

Now, when i = j but s 6= t then we have E[uituis|X] =
E[c2i ] + E[ci"it] + E[ci"is] + E["it"is] = �

2
c + 0 + 0 + 0

The last three terms are zero since we assume that both c and
" are IID
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The Random E↵ects Framework

The Variance-Covariance Structure

Lastly, when i 6= j we have E[uitujs|X] =
E[cicj ] + E[ci"js] + E[cj"it] + E["it"js] = 0 + 0 + 0 + 0

All of the terms are zero since we assume that both c and "

are IID
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The Random E↵ects Framework

The Variance-Covariance Structure

Let the variance-covariance for ui be defined as

⌦i =

2

6664

�

2
c + �

2
" �

2
c · · · �

2
c

�

2
c �

2
c + �

2
" · · · �

2
c

...
...

. . .
...

�

2
c �

2
c · · · �

2
c + �

2
"

3

7775
(3)
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The Random E↵ects Framework

The Matrix Form of the Variance-Covariance Structure

We are now in a position to derive the full variance-covariance
structure

For the random e↵ects framework the variance-covariance
structure of the unobserved e↵ects model is

⌦ =

2

6664

⌦i 0 · · · 0
0 ⌦i · · · 0
...

...
. . .

...
0 0 · · · ⌦i

3

7775
(4)

⌦ can be written succinctly as ⌦ = IN ⌦ ⌦i
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The Random E↵ects Framework

The Matrix Form of the Variance-Covariance Structure

Note that ⌦i does not actually depend on i, this is purely for
notational convenience

Also, ⌦i is a T ⇥T matrix that can be written as �2
cJT +�

2
"IT

Using properties of the Kronecker product we have

⌦ = IN ⌦ ⌦i =IN ⌦
�
�

2
cJT + �

2
"IT

�

=�

2
c (IN ⌦ JT ) + �

2
" (IN ⌦ IT ) (5)
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The Random E↵ects Framework

The Matrix Form of the Variance-Covariance Structure

Currently an unfortunate consequence of representing the
variance-covariance structure in full matrix form is that we
need ⌦�1

⌦ is an NT ⇥NT matrix, which for typical panels is large

Obtaining the inverse of matrices beyond a 1000⇥ 1000 are
di�cult and time consuming for standard machines
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The Random E↵ects Framework

Inverting ⌦

To invert ⌦ we use the trick of Wansbeek and Kapteyn (1982)

Their proposal is to write ⌦ as

⌦ =�

2
c (IN ⌦ JT ) + �

2
" (IN ⌦ IT )

=�

2
c

�
IN ⌦ T J̄T

�
+ �

2
"

�
IN ⌦

�
IT + J̄T � J̄T

��

=T�

2
c

�
IN ⌦ J̄T

�
+ �

2
"

�
IN ⌦+J̄T

�
+ �

2
"

�
IN ⌦

�
IT � J̄T

��

=
�
T�

2
c + �

2
"

� �
IN ⌦ J̄T

�
+ �

2
" (IN ⌦ ET ) (6)

where ET = IT � J̄T
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The Random E↵ects Framework

Inverting ⌦

The key here is to notice that IN ⌦ J̄T = P and
IN ⌦ ET = Q, our symmetric and idempotent matrices that
appeared when we derived the fixed e↵ects estimator

Let �2
1 = T�

2
c + �

2
"

We now have the simple characterization

⌦ = �

2
1P + �

2
"Q (7)

The form of ⌦ in (7) is known as the spectral decomposition
representation

The benefit of this decomposition is that we have

⌦�1 =
1

�

2
1

P +
1

�

2
"
Q (8)
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The Random E↵ects Framework

Inverting ⌦

We can see that this is the correct form for ⌦�1 as

⌦�1⌦ =

✓
1

�

2
1

P +
1

�

2
"
Q

◆�
�

2
1P + �

2
"Q

�

=
�

2
1

�

2
1

PP +
�

2
"

�

2
1

PQ+
�

2
c

�

2
"
QP +

�

2
"

�

2
"
QQ

=P + 0 + 0 +Q = I

In fact, it holds more generally that ⌦r =
�
�

2
1

�r
P +

�
�

2
"

�r
Q
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The GLS Estimator

We are now in position to construct the GLS estimator for the
random e↵ects framework of the unobserved e↵ects panel
data model

Our GLS estimator is

�̂GLS =

✓
X

0
✓

1

�

2
1

P +
1

�

2
"
Q

◆
X

◆�1

X

0
✓

1

�

2
1

P +
1

�

2
"
Q

◆
y

(9)

As it stands this estimator does not look intuitive; however,
with some further algebraic manipulations we can recast this
estimator in a similar fashion as the within estimator
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The GLS Estimator

Note that ⌦�1 = ⌦�1/2⌦�1/2

Further, ⌦�1/2 = 1
�1
P + 1

�"
Q

We have

�̂GLS =
⇣
X

0⌦�1/2⌦�1/2
X

⌘�1
X

0⌦�1/2⌦�1/2
y

=
⇣
X

0
�"⌦

�1/2
�"⌦

�1/2
X

⌘�1
X

0
�"⌦

�1/2
�"⌦

�1/2
y

=
�
X̌

0
X̌

��1
X̌

0
y̌ (10)

where ž = �"⌦�1/2
z
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The GLS Estimator

Lets think about what an element of ž looks like

First �"⌦�1/2 = Q+ �"
�1
P

A row of this matrix has elements 1� (1/T ) + (�"/T�1) for a
given individual and 0s everywhere else

Thus, we see that a typical element of
žit = zit � z̄i· + (�"/T�1) z̄i·

Condensing on notation we have that žit = zit � ✓z̄i· where
✓ = 1� (�"/�1)
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The GLS Estimator

This almost looks like the within estimator for the fixed e↵ects
framework

Recall from lecture 3 that a typical transformed element there
had z̃it = zit � z̄i·

Here the di↵erence is the presence of (�"/�1)

When this component is 0 we have that the estimators for the
random e↵ects and fixed e↵ects frameworks are the same

When is �"/�1 = 0?

We would need the variation in c to be orders of magnitude
larger than the variation in the idiosyncratic shocks

When is �"/�1 = 1?

We would have no variation in c, i.e. individual heterogeneity
is identical, so we just have an intercept
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The Between Estimator

A di↵erent decomposition of the random e↵ects estimator is
both intuitive and will be useful for later discussions (such as
when we discuss the Hausman test in Lecture 5)

The Between estimator is rarely used in practice, but appears
in many algebraic derivations and is useful for helping to gain
perspective

The Between estimator is the OLS estimator of the
transformed unobserved e↵ects model

Py = PX� + Pu (11)
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The Between Estimator

The estimator, denoted �̂Between, is

�̂Between =
�
X

0
PX

��1
X

0
Py (12)

Maddala (1971) uses the between estimator to construct a
useful decomposition for �̂GLS
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The Between Estimator

Consider the following system of 2NT observations

✓
Qy

Py

◆
=

✓
QX

PX

◆
� +

✓
Qu

Pu

◆
(13)

Maddala (1971) shows that GLS estimation of this system
produces exactly the random e↵ects estimator �̂GLS

What is interesting about this formulation is that we can
decompose the GLS estimator into ‘within’ and ‘between’
components
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The Between Estimator

To start note that the variance-covariance matrix of

✓
Qu

Pu

◆

is

⌃ =


�

2
"Q 0
0 �

2
1P

�

with inverse

⌃�1 =

"
1
�2
"
Q 0

0 1
�2
1
P

#
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The Between Estimator

GLS estimation using this inverse matrix produces

�̂GLS =

✓
1

�

2
"
X

0
QX +

1

�

2
1

X

0
PX

◆�1✓ 1

�

2
"
X

0
Qy +

1

�

2
1

X

0
Py

◆

=

✓
X

0
QX +

�

2
"

�

2
1

X

0
PX

◆�1✓
X

0
Qy +

�

2
"

�

2
1

X

0
Py

◆

=
�
X

0
QX + �

2
X

0
PX

��1 �
X

0
Qy + �

2
X

0
Py

�
(14)
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The Between Estimator

This derivation can be further decomposed

Let W =
�
X

0
QX + �

2
X

0
PX

�

We have

�̂GLS =W

�1
⇣
X

0
QX

�
X

0
QX

��1
X

0
Qy

+�

2
X

0
PX

�
�

2
X

0
PX

��1
�

2
X

0
Py

⌘

=W

�1
⇣
X

0
QX�̃ + �

2
X

0
PX�̂Between

⌘

=W1�̃ + (I �W1)�̂Between (15)
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The Between Estimator

Now, an interesting question is what does the Between
estimator capture/measure?

Notice that the Between regression is

ȳi· = ↵+ X̄

0
i·� + ūi·

Thus, � is identified o↵ of time variation in the mean of each
variable

No person specific variation is used to estimate �

Many consider this a serious limitation and it is partly the
reason why the Between estimator is not used in practice
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Estimation of the Variance Components

As it stands the GLS estimator for the random e↵ects
framework is infeasible since �1 and �" are unknown

We can construct estimators of the unknown variance terms
to produce a feasible GLS estimator

How do we estimate �1 and �"?
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Estimation of the Variance Components

To start, note that Pu ⇠ D(0,�2
1P ) and Qu ⇠ D(0,�2

"Q)

This suggests the estimators

b�2
1 =

u

0
Pu

tr(P )
(16)

and

b�2
" =

u

0
Qu

tr(Q)
(17)

This follows directly from a similar setup in the cross-sectional
case
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Estimation of the Variance Components

Note that tr(A⌦B) = tr(A)tr(B) so
tr(Q) = tr(IN )tr(ET ) = N · (T � 1) and
tr(P ) = tr(IN )tr(J̄T ) = N · 1 = N

We have the solutions

b�2
1 =

T

NP
i=1

ū

2
i·

N

(18)

and

b�2
" =

NP
i=1

TP
t=1

(uit � ūi·)2

N(T � 1)
(19)
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Estimation of the Variance Components

Of course the estimators in (18) and (19) are still not
functional because they rely on u, which is unobserved

There have been several proposals for replacing u with an
estimator

The main papers in this area are Wallace and Hussain (1969),
Amemiya (1971), Nerlove (1971) and Swamy and Aurora
(1972)
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Estimation of the Variance Components

The Wallace and Hussain Approach

Wallace and Hussain (1969) proposed replacing u with the
residuals obtained from OLS estimation of the unobserved
e↵ects panel data model

Under the random e↵ects framework the OLS estimator of �
is a consistent estimator so the residuals are reasonable
estimates for the unknown u

The Wallace and Hussain (1969) procedure is
- Step 1: Estimate the unobserved e↵ects model using pooled
OLS, obtain residuals

- Step 2: Use residuals in place of u in (18) and (19)
- Step 3: Use estimates of �2

1 and �

2
" to construct ⌦

- Step 4: Obtain the GLS estimator
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Estimation of the Variance Components

The Amemiya Approach

Amemiya (1971) shows that the Wallace and Hussain (1969)
approach su↵ers some theoretical drawbacks

Amemiya (1971) proposed replacing u with the residuals
obtained from within estimation of the unobserved e↵ects
panel data model

Under the random e↵ects framework the within estimator of �
is a consistent estimator so the residuals are reasonable
estimates for the unknown u

The Amemiya (1971) procedure is
- Step 1: Estimate the unobserved e↵ects model using the
within estimator, obtain residuals

- Step 2: Use residuals in place of u in (18) and (19)
- Step 3: Use estimates of �2

1 and �

2
" to construct ⌦

- Step 4: Obtain the GLS estimator
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Estimation of the Variance Components

The Nerlove Approach

Nerlove (1971) constructs �2
1 by using an estimator of �2

c

Nerlove (1971) proposes estimating �

2
c using the estimated

fixed e↵ects from within estimation of the unobserved e↵ects
panel data model and estimating �

2
" from the residuals sum or

squares obtained by within estimation of the unobserved
e↵ects panel data model

The Nerlove (1971) procedure is
- Step 1: Estimate the unobserved e↵ects model using the
within estimator, obtain residuals and estimated fixed e↵ects

- Step 2: Construct �̂2
c =

NP
i=1

�
ĉi � ¯̂

c

�2
/(N � 1)

- Step 3: Construct �̂2
" =

NP
i=1

TP
t=1

"̂

2
it/NT

- Step 4a: Use estimates of �2
c and �

2
" to construct �̂2

1

- Step4b: Use estimates of �2
1 and �

2
" to construct ⌦

- Step 5: Obtain the GLS estimator
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Estimation of the Variance Components

The Swamy and Arora Approach

Swamy and Arora (1972) proposed estimating �

2
" and �

2
1

using two di↵erent estimators

The Swamy and Arora (1972) approach does not replace the
errors in (18) and (19) but constructs entirely di↵erent
estimators altogether

They suggest using the residual variance estimator from the
within model to estimate �

2
" and the residual variance

estimator from between model to estimate �

2
1

The Swamy and Arora (1972) procedure is
- Step 1: Construct �̂2

" from the residuals from within
estimation of the unobserved e↵ects model

- Step 2: Construct �̂2
1 from the residuals from between

estimation of the unobserved e↵ect model
- Step 3: Use these estimates of �2

1 and �

2
" to construct ⌦

- Step 4: Obtain the GLS estimator
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Estimation of the Variance Components

The Application of Variance Components Estimators

In practice there is no clear approach that one should favor

One concern is what to do when one obtains a negative
estimate of �2

c

While an estimate of �2
1 is needed for GLS estimation, interest

hinges on �

2
c

If �̂2
c < 0 this implies that �̂2

1 < �̂

2
" which does not make sense

Only Nerlove’s (1971) approach guarantees a nonnegative
estimate of �2

c
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Estimation of the Variance Components

The Application of Variance Components Estimators

An existing solution is to replace a negative estimate of �̂2
c

with 0

A simulation study by Maddala and Mount (1973) found that
negative estimates of �2

c occurred infrequently (in their
simulated data) and was most prevalent when �

2
c was small

It appears that this issue is not a serious problem; if you
encounter it in applied work you can use an alternative
approach to estimate the error component variances or simply
replace �̂

2
1 with �̂

2
"

Further simulation studies by Baltagi (1981) find that there is
little di↵erence in the finite sample properties of the GLS
estimator for � across the di↵erent approaches to estimating
the unknown error variances
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Estimation of the Variance Components

The Application of Variance Components Estimators

Regardless of which estimation approach you use, make sure
that you know which one is the default in your statistical
software

For example, in R, the plm command uses as a default the
Swamy and Arora (1972) approach when the random e↵ects
estimator is chosen

At a minimum you need to know which approach is used when
using canned statistical software
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Highlights from this Lecture

Discuss estimation of the unobserved e↵ects model under the
random e↵ects framework

Described the unique variance-covariance structure of the
errors term in this model

Proposed a GLS estimator that exploits this
variance-covariance structure

Learned several approaches to estimate the unknown
parameters in the variance-covariance structure
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