Applied Panel Data Analysis - Lecture 4

Christopher F. Parmeter

AGRODEP

March 10-14 ${ }^{\text {th }}, 2015$
Addis Ababa, Ethiopia

- Cover estimation of the unobserved effect model under the random effects framework
- Develop intuition for how the generalized least squares estimator works in this context
- Learn about the between estimator
- Discuss why strict exogeneity is needed for the covariates
- Our unobserved effects model is identical for the random effects framework for the unobserved effects model as with the fixed effects framework

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+c_{i}+\varepsilon_{i t} \tag{1}
\end{equation*}
$$

- The key difference is that in the random effects framework, we assume not only that $E\left[\varepsilon_{i t} \mid x_{i s}, c_{i}\right]=0$ for $s=1, \ldots, T$, but $E\left[c_{i} \mid x_{i s}\right]=E\left[c_{i}\right]=0$ for $s=1, \ldots, T$
- This last condition is the important distinction between the random and fixed effects framework, as we discussed in Lecture 2
- The assumption of no correlation between the observable covariates, $x_{i t}$ and the unobservable, individual specific heterogeneity, c_{i} means that we do not need to control for its presence when we estimate β in (1)
- However, by placing c_{i} in the error term we now have what is known as a composed error or a one-way error component
- Typically standard OLS estimation when there is a composed error will not produce an estimator with appealing statistical properties
- To see this more clearly rewrite the model in (1) as

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+u_{i t} \tag{2}
\end{equation*}
$$

where $u_{i t}=c_{i}+\varepsilon_{i t}$

- Note that if $E\left[\varepsilon \varepsilon^{\prime} \mid X\right]=\sigma^{2} I_{N T}$, then $E\left[u u^{\prime} \mid X\right] \neq \sigma^{2} I_{N T}$
- This is because there is correlation between $u_{i t}$ and $u_{i s}, s \neq t$ due to the presence of c_{i}
- In essence, we have introduced serial correlation amongst some errors when we migrate from the fixed effects framework to the random effects framework
- Given that our error no longer has constant variance and zero serial correlation, OLS estimation of (2) will not produce an efficient estimator
- However, we can derive the exact generalized least squares estimator (GLS) since we know the form of the variance-covariance structure
- Recall that when the variance-covariance structure of the error term from a model is Ω, the GLS estimator is $\hat{\beta}_{G L S}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y$
- The OLS estimator for the random effects framework of the unobserved effects model is nothing more than GLS
- To construct the GLS estimator for the random effects framework we need to determine the structure of the variance-covariance matrix of u
- Given that our individual, unobserved heterogeneity is in the error term it will help to think of the $c_{i} \mathrm{~s}$ as random variables that come from some distribution
- We will assume that $c_{i} \sim \operatorname{IID}\left(0, \sigma_{c}^{2}\right)$
- To help distinguish the variance parameter for ε we will also assume that $\varepsilon_{i t} \sim \operatorname{IID}\left(0, \sigma_{\varepsilon}^{2}\right)$
- To determine the structure of the variance-covariance of u we need to determine the expectation of four different terms
- Recall that the variance-covariance matrix is $E\left[u u^{\prime} \mid X\right]$ and $u u^{\prime}$ contains elements of the form $u_{i t} u_{j s}$ for $s, t=1, \ldots, T$ and $i, j=1, \ldots, N$
- When $i=j$ and $s=t$ we have

$$
E\left[u_{i t}^{2} \mid X\right]=E\left[c_{i}^{2}\right]+2 E\left[c_{i} \varepsilon_{i t}\right]+E\left[\varepsilon_{i t}^{2}\right]=\sigma_{c}^{2}+0+\sigma_{\varepsilon}^{2}
$$

- The middle term is zero since we assume that both c and ε are $I I D$
- Now, when $i=j$ but $s \neq t$ then we have $E\left[u_{i t} u_{i s} \mid X\right]=$ $E\left[c_{i}^{2}\right]+E\left[c_{i} \varepsilon_{i t}\right]+E\left[c_{i} \varepsilon_{i s}\right]+E\left[\varepsilon_{i t} \varepsilon_{i s}\right]=\sigma_{c}^{2}+0+0+0$
- The last three terms are zero since we assume that both c and ε are $I I D$
- Lastly, when $i \neq j$ we have $E\left[u_{i t} u_{j s} \mid X\right]=$ $E\left[c_{i} c_{j}\right]+E\left[c_{i} \varepsilon_{j s}\right]+E\left[c_{j} \varepsilon_{i t}\right]+E\left[\varepsilon_{i t} \varepsilon_{j s}\right]=0+0+0+0$
- All of the terms are zero since we assume that both c and ε are $I I D$
- Let the variance-covariance for u_{i} be defined as

$$
\Omega_{i}=\left[\begin{array}{cccc}
\sigma_{c}^{2}+\sigma_{\varepsilon}^{2} & \sigma_{c}^{2} & \cdots & \sigma_{c}^{2} \tag{3}\\
\sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{\varepsilon}^{2} & \cdots & \sigma_{c}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{c}^{2} & \sigma_{c}^{2} & \cdots & \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}
\end{array}\right]
$$

- We are now in a position to derive the full variance-covariance structure
- For the random effects framework the variance-covariance structure of the unobserved effects model is

$$
\Omega=\left[\begin{array}{cccc}
\Omega_{i} & 0 & \cdots & 0 \tag{4}\\
0 & \Omega_{i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Omega_{i}
\end{array}\right]
$$

- Ω can be written succinctly as $\Omega=I_{N} \otimes \Omega_{i}$
- Note that Ω_{i} does not actually depend on i, this is purely for notational convenience
- Also, Ω_{i} is a $T \times T$ matrix that can be written as $\sigma_{c}^{2} J_{T}+\sigma_{\varepsilon}^{2} I_{T}$
- Using properties of the Kronecker product we have

$$
\begin{align*}
\Omega=I_{N} \otimes \Omega_{i} & =I_{N} \otimes\left(\sigma_{c}^{2} J_{T}+\sigma_{\varepsilon}^{2} I_{T}\right) \\
& =\sigma_{c}^{2}\left(I_{N} \otimes J_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes I_{T}\right) \tag{5}
\end{align*}
$$

- Currently an unfortunate consequence of representing the variance-covariance structure in full matrix form is that we need Ω^{-1}
- Ω is an $N T \times N T$ matrix, which for typical panels is large
- Obtaining the inverse of matrices beyond a 1000×1000 are difficult and time consuming for standard machines
- To invert Ω we use the trick of Wansbeek and Kapteyn (1982)
- Their proposal is to write Ω as

$$
\begin{align*}
\Omega & =\sigma_{c}^{2}\left(I_{N} \otimes J_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes I_{T}\right) \\
& =\sigma_{c}^{2}\left(I_{N} \otimes T \bar{J}_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes\left(I_{T}+\bar{J}_{T}-\bar{J}_{T}\right)\right) \\
& =T \sigma_{c}^{2}\left(I_{N} \otimes \bar{J}_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes+\bar{J}_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes\left(I_{T}-\bar{J}_{T}\right)\right) \\
& =\left(T \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}\right)\left(I_{N} \otimes \bar{J}_{T}\right)+\sigma_{\varepsilon}^{2}\left(I_{N} \otimes E_{T}\right) \tag{6}
\end{align*}
$$

where $E_{T}=I_{T}-\bar{J}_{T}$

- The key here is to notice that $I_{N} \otimes \bar{J}_{T}=P$ and $I_{N} \otimes E_{T}=Q$, our symmetric and idempotent matrices that appeared when we derived the fixed effects estimator
- Let $\sigma_{1}^{2}=T \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}$
- We now have the simple characterization

$$
\begin{equation*}
\Omega=\sigma_{1}^{2} P+\sigma_{\varepsilon}^{2} Q \tag{7}
\end{equation*}
$$

- The form of Ω in (7) is known as the spectral decomposition representation
- The benefit of this decomposition is that we have

$$
\begin{equation*}
\Omega^{-1}=\frac{1}{\sigma_{1}^{2}} P+\frac{1}{\sigma_{\varepsilon}^{2}} Q \tag{8}
\end{equation*}
$$

- We can see that this is the correct form for Ω^{-1} as

$$
\begin{aligned}
\Omega^{-1} \Omega & =\left(\frac{1}{\sigma_{1}^{2}} P+\frac{1}{\sigma_{\varepsilon}^{2}} Q\right)\left(\sigma_{1}^{2} P+\sigma_{\varepsilon}^{2} Q\right) \\
& =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}} P P+\frac{\sigma_{\varepsilon}^{2}}{\sigma_{1}^{2}} P Q+\frac{\sigma_{c}^{2}}{\sigma_{\varepsilon}^{2}} Q P+\frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}} Q Q \\
& =P+0+0+Q=I
\end{aligned}
$$

- In fact, it holds more generally that $\Omega^{r}=\left(\sigma_{1}^{2}\right)^{r} P+\left(\sigma_{\varepsilon}^{2}\right)^{r} Q$
- We are now in position to construct the GLS estimator for the random effects framework of the unobserved effects panel data model
- Our GLS estimator is

$$
\begin{equation*}
\hat{\beta}_{G L S}=\left(X^{\prime}\left(\frac{1}{\sigma_{1}^{2}} P+\frac{1}{\sigma_{\varepsilon}^{2}} Q\right) X\right)^{-1} X^{\prime}\left(\frac{1}{\sigma_{1}^{2}} P+\frac{1}{\sigma_{\varepsilon}^{2}} Q\right) y \tag{9}
\end{equation*}
$$

- As it stands this estimator does not look intuitive; however, with some further algebraic manipulations we can recast this estimator in a similar fashion as the within estimator
- Note that $\Omega^{-1}=\Omega^{-1 / 2} \Omega^{-1 / 2}$
- Further, $\Omega^{-1 / 2}=\frac{1}{\sigma_{1}} P+\frac{1}{\sigma_{\varepsilon}} Q$
- We have

$$
\begin{align*}
\hat{\beta}_{G L S} & =\left(X^{\prime} \Omega^{-1 / 2} \Omega^{-1 / 2} X\right)^{-1} X^{\prime} \Omega^{-1 / 2} \Omega^{-1 / 2} y \\
& =\left(X^{\prime} \sigma_{\varepsilon} \Omega^{-1 / 2} \sigma_{\varepsilon} \Omega^{-1 / 2} X\right)^{-1} X^{\prime} \sigma_{\varepsilon} \Omega^{-1 / 2} \sigma_{\varepsilon} \Omega^{-1 / 2} y \\
& =\left(\check{X}^{\prime} \check{X}\right)^{-1} \check{X}^{\prime} \check{y} \tag{10}
\end{align*}
$$

where $\check{z}=\sigma_{\varepsilon} \Omega^{-1 / 2} z$

- Lets think about what an element of \check{z} looks like
- First $\sigma_{\varepsilon} \Omega^{-1 / 2}=Q+\frac{\sigma_{\varepsilon}}{\sigma_{1}} P$
- A row of this matrix has elements $1-(1 / T)+\left(\sigma_{\varepsilon} / T \sigma_{1}\right)$ for a given individual and 0s everywhere else
- Thus, we see that a typical element of

$$
\check{z}_{i t}=z_{i t}-\bar{z}_{i} .+\left(\sigma_{\varepsilon} / T \sigma_{1}\right) \bar{z}_{i} .
$$

- Condensing on notation we have that $\check{z}_{i t}=z_{i t}-\theta \bar{z}_{i}$. where $\theta=1-\left(\sigma_{\varepsilon} / \sigma_{1}\right)$
- This almost looks like the within estimator for the fixed effects framework
- Recall from lecture 3 that a typical transformed element there had $\tilde{z}_{i t}=z_{i t}-\bar{z}_{i}$.
- Here the difference is the presence of $\left(\sigma_{\varepsilon} / \sigma_{1}\right)$
- When this component is 0 we have that the estimators for the random effects and fixed effects frameworks are the same
- When is $\sigma_{\varepsilon} / \sigma_{1}=0$?
- We would need the variation in c to be orders of magnitude larger than the variation in the idiosyncratic shocks
- When is $\sigma_{\varepsilon} / \sigma_{1}=1$?
- We would have no variation in c, i.e. individual heterogeneity is identical, so we just have an intercept
- A different decomposition of the random effects estimator is both intuitive and will be useful for later discussions (such as when we discuss the Hausman test in Lecture 5)
- The Between estimator is rarely used in practice, but appears in many algebraic derivations and is useful for helping to gain perspective
- The Between estimator is the OLS estimator of the transformed unobserved effects model

$$
\begin{equation*}
P y=P X \beta+P u \tag{11}
\end{equation*}
$$

- The estimator, denoted $\hat{\beta}_{\text {Between }}$, is

$$
\begin{equation*}
\hat{\beta}_{\text {Between }}=\left(X^{\prime} P X\right)^{-1} X^{\prime} P y \tag{12}
\end{equation*}
$$

- Maddala (1971) uses the between estimator to construct a useful decomposition for $\hat{\beta}_{G L S}$
- Consider the following system of $2 N T$ observations

$$
\begin{equation*}
\binom{Q y}{P y}=\binom{Q X}{P X} \beta+\binom{Q u}{P u} \tag{13}
\end{equation*}
$$

- Maddala (1971) shows that GLS estimation of this system produces exactly the random effects estimator $\hat{\beta}_{G L S}$
- What is interesting about this formulation is that we can decompose the GLS estimator into 'within' and 'between' components
- To start note that the variance-covariance matrix of $\binom{Q u}{P u}$ is

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{\varepsilon}^{2} Q & 0 \\
0 & \sigma_{1}^{2} P
\end{array}\right]
$$

with inverse

$$
\Sigma^{-1}=\left[\begin{array}{cc}
\frac{1}{\sigma_{\varepsilon}^{2}} Q & 0 \\
0 & \frac{1}{\sigma_{1}^{2}} P
\end{array}\right]
$$

- GLS estimation using this inverse matrix produces

$$
\begin{align*}
\hat{\beta}_{G L S} & =\left(\frac{1}{\sigma_{\varepsilon}^{2}} X^{\prime} Q X+\frac{1}{\sigma_{1}^{2}} X^{\prime} P X\right)^{-1}\left(\frac{1}{\sigma_{\varepsilon}^{2}} X^{\prime} Q y+\frac{1}{\sigma_{1}^{2}} X^{\prime} P y\right) \\
& =\left(X^{\prime} Q X+\frac{\sigma_{\varepsilon}^{2}}{\sigma_{1}^{2}} X^{\prime} P X\right)^{-1}\left(X^{\prime} Q y+\frac{\sigma_{\varepsilon}^{2}}{\sigma_{1}^{2}} X^{\prime} P y\right) \\
& =\left(X^{\prime} Q X+\phi^{2} X^{\prime} P X\right)^{-1}\left(X^{\prime} Q y+\phi^{2} X^{\prime} P y\right) \tag{14}
\end{align*}
$$

- This derivation can be further decomposed
- Let $W=\left(X^{\prime} Q X+\phi^{2} X^{\prime} P X\right)$
- We have

$$
\begin{align*}
\hat{\beta}_{G L S}= & W^{-1}\left(X^{\prime} Q X\left(X^{\prime} Q X\right)^{-1} X^{\prime} Q y\right. \\
& \left.\quad+\phi^{2} X^{\prime} P X\left(\phi^{2} X^{\prime} P X\right)^{-1} \phi^{2} X^{\prime} P y\right) \\
= & W^{-1}\left(X^{\prime} Q X \tilde{\beta}+\phi^{2} X^{\prime} P X \hat{\beta}_{\text {Between }}\right) \\
= & W_{1} \tilde{\beta}+\left(I-W_{1}\right) \hat{\beta}_{\text {Between }} \tag{15}
\end{align*}
$$

- Now, an interesting question is what does the Between estimator capture/measure?
- Notice that the Between regression is

$$
\bar{y}_{i .}=\alpha+\bar{X}_{i .}^{\prime} \beta+\bar{u}_{i} .
$$

- Thus, β is identified off of time variation in the mean of each variable
- No person specific variation is used to estimate β
- Many consider this a serious limitation and it is partly the reason why the Between estimator is not used in practice
- As it stands the GLS estimator for the random effects framework is infeasible since σ_{1} and σ_{ε} are unknown
- We can construct estimators of the unknown variance terms to produce a feasible GLS estimator
- How do we estimate σ_{1} and σ_{ε} ?
- To start, note that $P u \sim D\left(0, \sigma_{1}^{2} P\right)$ and $Q u \sim D\left(0, \sigma_{\varepsilon}^{2} Q\right)$
- This suggests the estimators

$$
\begin{equation*}
\widehat{\sigma}_{1}^{2}=\frac{u^{\prime} P u}{\operatorname{tr}(P)} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\sigma}_{\varepsilon}^{2}=\frac{u^{\prime} Q u}{\operatorname{tr}(Q)} \tag{17}
\end{equation*}
$$

- This follows directly from a similar setup in the cross-sectional case
- Note that $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B)$ so $\operatorname{tr}(Q)=\operatorname{tr}\left(I_{N}\right) \operatorname{tr}\left(E_{T}\right)=N \cdot(T-1)$ and $\operatorname{tr}(P)=\operatorname{tr}\left(I_{N}\right) \operatorname{tr}\left(\bar{J}_{T}\right)=N \cdot 1=N$
- We have the solutions

$$
\begin{equation*}
\widehat{\sigma}_{1}^{2}=\frac{T \sum_{i=1}^{N} \bar{u}_{i}^{2}}{N} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\sigma}_{\varepsilon}^{2}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left(u_{i t}-\bar{u}_{i} .\right)^{2}}{N(T-1)} \tag{19}
\end{equation*}
$$

- Of course the estimators in (18) and (19) are still not functional because they rely on u, which is unobserved
- There have been several proposals for replacing u with an estimator
- The main papers in this area are Wallace and Hussain (1969), Amemiya (1971), Nerlove (1971) and Swamy and Aurora (1972)
- Wallace and Hussain (1969) proposed replacing u with the residuals obtained from OLS estimation of the unobserved effects panel data model
- Under the random effects framework the OLS estimator of β is a consistent estimator so the residuals are reasonable estimates for the unknown u
- The Wallace and Hussain (1969) procedure is
- Step 1: Estimate the unobserved effects model using pooled OLS, obtain residuals
- Step 2: Use residuals in place of u in (18) and (19)
- Step 3: Use estimates of σ_{1}^{2} and σ_{ε}^{2} to construct Ω
- Step 4: Obtain the GLS estimator
- Amemiya (1971) shows that the Wallace and Hussain (1969) approach suffers some theoretical drawbacks
- Amemiya (1971) proposed replacing u with the residuals obtained from within estimation of the unobserved effects panel data model
- Under the random effects framework the within estimator of β is a consistent estimator so the residuals are reasonable estimates for the unknown u
- The Amemiya (1971) procedure is
- Step 1: Estimate the unobserved effects model using the within estimator, obtain residuals
- Step 2: Use residuals in place of u in (18) and (19)
- Step 3: Use estimates of σ_{1}^{2} and σ_{ε}^{2} to construct Ω
- Step 4: Obtain the GLS estimator
- Nerlove (1971) constructs σ_{1}^{2} by using an estimator of σ_{c}^{2}
- Nerlove (1971) proposes estimating σ_{c}^{2} using the estimated fixed effects from within estimation of the unobserved effects panel data model and estimating σ_{ε}^{2} from the residuals sum or squares obtained by within estimation of the unobserved effects panel data model
- The Nerlove (1971) procedure is
- Step 1: Estimate the unobserved effects model using the within estimator, obtain residuals and estimated fixed effects
- Step 2: Construct $\hat{\sigma}_{c}^{2}=\sum_{i=1}^{N}\left(\hat{c}_{i}-\bar{c}\right)^{2} /(N-1)$
- Step 3: Construct $\hat{\sigma}_{\varepsilon}^{2}=\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{\varepsilon}_{i t}^{2} / N T$
- Step 4a: Use estimates of σ_{c}^{2} and σ_{ε}^{2} to construct $\hat{\sigma}_{1}^{2}$
- Step4b: Use estimates of σ_{1}^{2} and σ_{ε}^{2} to construct Ω
- Step 5: Obtain the GLS estimator
- Swamy and Arora (1972) proposed estimating σ_{ε}^{2} and σ_{1}^{2} using two different estimators
- The Swamy and Arora (1972) approach does not replace the errors in (18) and (19) but constructs entirely different estimators altogether
- They suggest using the residual variance estimator from the within model to estimate σ_{ε}^{2} and the residual variance estimator from between model to estimate σ_{1}^{2}
- The Swamy and Arora (1972) procedure is
- Step 1: Construct $\hat{\sigma}_{\varepsilon}^{2}$ from the residuals from within estimation of the unobserved effects model
- Step 2: Construct $\hat{\sigma}_{1}^{2}$ from the residuals from between estimation of the unobserved effect model
- Step 3: Use these estimates of σ_{1}^{2} and σ_{ε}^{2} to construct Ω
- Step 4: Obtain the GLS estimator
- In practice there is no clear approach that one should favor
- One concern is what to do when one obtains a negative estimate of σ_{c}^{2}
- While an estimate of σ_{1}^{2} is needed for GLS estimation, interest hinges on σ_{c}^{2}
- If $\hat{\sigma}_{c}^{2}<0$ this implies that $\hat{\sigma}_{1}^{2}<\hat{\sigma}_{\varepsilon}^{2}$ which does not make sense
- Only Nerlove's (1971) approach guarantees a nonnegative estimate of σ_{c}^{2}
- An existing solution is to replace a negative estimate of $\hat{\sigma}_{c}^{2}$ with 0
- A simulation study by Maddala and Mount (1973) found that negative estimates of σ_{c}^{2} occurred infrequently (in their simulated data) and was most prevalent when σ_{c}^{2} was small
- It appears that this issue is not a serious problem; if you encounter it in applied work you can use an alternative approach to estimate the error component variances or simply replace $\hat{\sigma}_{1}^{2}$ with $\hat{\sigma}_{\varepsilon}^{2}$
- Further simulation studies by Baltagi (1981) find that there is little difference in the finite sample properties of the GLS estimator for β across the different approaches to estimating the unknown error variances
- Regardless of which estimation approach you use, make sure that you know which one is the default in your statistical software
- For example, in R, the plm command uses as a default the Swamy and Arora (1972) approach when the random effects estimator is chosen
- At a minimum you need to know which approach is used when using canned statistical software
- Discuss estimation of the unobserved effects model under the random effects framework
- Described the unique variance-covariance structure of the errors term in this model
- Proposed a GLS estimator that exploits this variance-covariance structure
- Learned several approaches to estimate the unknown parameters in the variance-covariance structure

