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Overview

Cover estimation of the unobserved effect model under the
fixed effects framework

Develop intuition for how within estimator works

Discuss why strict exogeneity is needed for the covariates
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The Fixed Effect Framework

Our last lecture paid careful attention to the unobserved
effects panel data model

To begin our discussion we will focus on building an estimator
for the fixed effects framework

Recall that with the fixed effects framework we are assuming
that Cov(xit, ci) 6= 0
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The Fixed Effect Framework

Once again, the unobserved effects model with individual,
time constant heterogeneity is

yit = x′itβ + ci + εit (1)

We discussed an example in the previous lecture on removing
ci by differencing between two time periods

A natural question is “When we have more than two time
periods which period should we difference with?”

We could difference with xi1 always or we could difference
with xit−1 or xit−2 (though in this case you would
unnecessarily lose observations)
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The Fixed Effect Framework

An alternative to deciding how to difference is to use time
averaging

Notice that c̄i = T−1
T∑
t=1

ci = ci

So if we time average each variable, for each individual, we
could then difference and ci would be eliminated

We will use the notation z̄i· = T−1
T∑
t=1

zit where z could be

either y, ε or one of our x variables
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The Fixed Effect Framework

Our time averaged version of the unobserved effects model
becomes

ȳi· = x̄′i·β + ci + ε̄i· (2)

Subtracting (2) from (1) yields

yit − ȳi· = (xit − x̄i·)′ β + ci − ci + εit − ε̄i·
= (xit − x̄i·)′ β + εit − ε̄i· (3)

Notice from (3) that ci is no longer present

This suggests if we run the regression of time demeaned y on
time demeaned x we can recover an estimate of β
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The Fixed Effect Framework

Now this setup might appear cumbersome because we have to
calculate ȳi· and x̄i· for each individual

With a large micro panel this can quickly get expensive

An alternative way to think about the unobserved effects
model assuming nonzero correlation is that ci represents a
unique intercept for each individual

Instead of a common intercept for all individuals, here each
individual has a (potentially) different starting point
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The Fixed Effect Framework

A model where there are different intercepts should be familiar
to you

Consider a wage regression with a dummy variable for gender

Consider production function estimation with a dummy
variable for old and young farmers

Consider a profit model with a dummy variable for public and
private companies

Notice that in each example the model contained a dummy
variable that split the sample into two groups

Here we have a dummy variable that splits our sample into N
groups, one for each individual
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The Fixed Effect Framework

Lets collect this set of N dummy variables into a matrix called
C

What does C look like?

C is an NT × T matrix that can be written as IN ⊗ ıT where
IN is the N ×N identify matrix and ıT is a T × 1 vector of
all ones

The symbol ⊗ stands for the Kronecker product
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The Kronecker Product

The Kronecker product may be unfamiliar to you so lets have
a brief review

For A, an m× r matrix, and B a p× q matrix, A⊗B is a
mp× rq matrix

A⊗B =

 a11B · · · a1rB
...

. . .
...

am1B · · · amrB

 (4)

Notice that the Kronecker product does not require A and B
to be conformable as would be necessary with standard matrix
multiplication and addition
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The Kronecker Product

Some basic properties of the Kronecker product that we will
use are:

(A⊗B)
′

= A′ ⊗B′
(A⊗B)

−1
= A−1 ⊗B−1

(A⊗B) (D ⊗ F ) = AD ⊗BF
There are many other associative, bilinearity and commutative
properties, but they will not appear in our discussion
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The Matrix Formulation

We will define several additional matrices that will help us to
succinctly formulate the estimator for the unobserved effects
model

Let y denote the NT × 1 vector of regressands, ε denote the
NT × 1 vector of error terms and X denote the NT ×K
vector of regressors

Define P = C(C ′C)−1C ′ and Q = INT − P
P and Q will be important in our construction of an estimator
for the unobserved effects model
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The Matrix Formulation

Note that we can provide a more intuitive characterization of
P by using its formal definition

P =C(C ′C)−1C ′

=(IN ⊗ ıT )((IN ⊗ ıT )′IN ⊗ ıT )−1(IN ⊗ ıT )′

=(IN ⊗ ıT )(IN ⊗ ı′T ıT )−1(IN ⊗ ı′T )

=(IN ⊗ ıT )(IN ⊗ T )−1(IN ⊗ ı′T )

=(IN ⊗ ıT )(IN ⊗ T−1)(IN ⊗ ı′T )

=IN ⊗ ıT ı′TT−1

=IN ⊗ T−1JT = IN ⊗ J̄T (5)
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The Matrix Formulation

Here JT is a T × T matrix of all ones and J̄T is a T × T
matrix where each element is T−1

Notice that

Pz = z̄ =

z1·, . . . , z1·︸ ︷︷ ︸
T times

, z2· . . . , z2·︸ ︷︷ ︸
T times

, . . . , . . . , zN ·, . . . , zN ·︸ ︷︷ ︸
T times


We also have Qz = z − Pz will demean each variable

It is useful to point out that Q′ = Q, P ′ = P , QQ = Q and
PP = P

In words, both Q and P are symmetric and idempotent

Further QP = 0 and Q+ P = INT
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The Matrix Formulation

Now, rewrite our unobserved effects model in (1) in matrix
form as

y = Xβ + Cα+ ε (6)

Premultiplication of (6) by Q (remember we want to time
demean) yields

Qy =QXβ +QCα+Qε

=QXβ +Qε (7)

The presence of C has disappeared given that since Q
demeans, and C is time constant, then demeaning a constant
yields 0
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The Matrix Formulation

If we were to use the notation z̃ = Qz, then (7) can be
succinctly written as

ỹ = X̃β + ε̃ (8)

The elegance of (8) is that aside from the awkward ε̃ this
looks like a standard OLS regression of ỹ on X̃

If E(εε′|X,C) = σ2INT , then E(ε̃ε̃′|X) = σ2Q 6= σ2NT

Thus, a generalized least squares estimator will be appropriate

Remember that even though we are estimating β from (8) we
must interpret β from (7)
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The Matrix Formulation

Our estimator for β that controls for the unobserved, fixed
individual heterogeneity is

β̃ =
(
X̃ ′X̃

)−1
X̃ ′ỹ (9)

Standard results also yield

V ar(β̃) = σ2
(
X̃ ′X̃

)−1
(10)
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The Matrix Formulation

An estimator for σ2 is

σ̂2 = (N(T − 1)−K)−1 ˆ̃ε′ ˆ̃ε (11)

where ˆ̃ε = ỹ − X̃β̃
The unobservable individual effects can be recovered as

c̃ = Py − PXβ̃ (12)

That is, c̃i = ȳi· − x′i·β
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The Matrix Formulation

The matrix of dummy variables C has prompted β̃ to be
referred to as the least squares dummy variable estimator
(LSDV)

The more common parlance is to refer to β̃ as the within
estimator or the fixed effects estimator
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The Matrix Formulation

What is the intuition for how the LSDV/within estimator
works?

β is identified off of variation across individual variation over
time

Recall the pooled OLS estimator identifies β off of variation in
the covariates in general

Consider the simple unobserved effects model with a single
covariate

yit = βxit + ci + εit (13)
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The Matrix Formulation

The pooled OLS estimator (ignoring ci) produces

β̂ =

N∑
i=1

T∑
t=1

(yit − ȳ)(xit − x̄)

N∑
i=1

T∑
t=1

(xit − x̄)2

Whereas the within estimator produces

β̃ =

N∑
i=1

T∑
t=1

(yit − ȳi·)(xit − x̄i·)

N∑
i=1

T∑
t=1

(xit − x̄i·)2
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The Matrix Formulation

It should be clear that the pooled OLS estimator is based on
the overall variation in y and x

The within estimator is based completely off of individual
specific variation

What does this mean?

We need within individual variation of the covariates to
produce an estimator that has meaning

Sometimes you will hear/read that “identification is off of
individual specific variation”
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The Matrix Formulation

For large micro panels you would always want to use the
within estimator as opposed to directly estimating (6)

The reason for this is the fact that instead of inverting a
K ×K matrix (which is easy) you would be inverting an
(N +K)× (N +K) matrix (which is not easy when N is
large)
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The Matrix Formulation

Note also that if you have any elements in X that are time
constant, that Q eliminates them

This is the same issue we discussed in lecture 2 when we
introduced ci

We cannot separate ci (which is time constant) from another,
observable time constant variable

Note that time constant here means a variable is constant
across time for all individuals; it is fine to have a variable
which varies for some individuals and is constant for others
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The Matrix Formulation

For the fixed effects estimator to be consistent we need strict
exogeneity conditional on the unobserved effect,
E(εit|xis, ci) = 0, s = 1, . . . , T

Given the time averaging that we use to eliminate ci relaxing
this assumption would not ensure that x and ε are
uncorrelated for a given individual, a necessary condition to
have both an unbiased and consistent estimator

We also want to think about T being fixed and N −→∞
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The Matrix Formulation

The estimator for the unobserved effects is inconsistent as
N −→∞
Why? As N grows larger, we have more unobserved effects to
estimate

This is known as the incidental parameters problem (see
Lancaster, 2000)

We need T −→∞ for the estimator of the unobserved effects
to be consistent
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Additional Extensions

Including Time Constant Variables

We have seen that one unfortunate consequence with the
inclusion of time constant individual specific unobservable
effects is that we cannot recover the impact of observable
time constant individual specific effects

However, we can discern if the impact of these observable
time constant variables has changed over time

We do this by interacting our time constant variables with
time period dummy variables



APDE

Additional Extensions

Including Time Constant Variables

Let the matrix DT denote ıN ⊗ IT−1, the matrix of time
period effects (only for T1); further partition our matrix of
covariates so that the time constant variables are collected
separately as Z, where Z is N(T − 1)×Kz

Then, instead of including Z in our unobserved effects model,
we include DTZ

Our new model is

y = Xβ + (DTZ)γ + Cα+ ε (14)

Given that the elements of DTZ vary over individual and
time, when we premultiply by Q to remove C, Z will still
appear in the model
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Additional Extensions

Including Time Constant Variables

Now, we must be careful because γjt does not represent the
effect of Zij on y, rather it is the effect of Zij on y in period t
relative to the baseline period

In our setup the baseline period is the last period, period T

Thus, we can estimate how a particular time constant
variable’s impact is changing over time
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Additional Extensions

Robust Standard Errors

The variance-covariance of β̃ in (10) is incorrect if the
assumption of a constant conditional variance

This assumption could fail if we have time specific
heteroskedasticity, if there is classic heteroskedasticity, or if
there is serial correlation in the error terms (this is important
with a moderately sized T )

Can use the insights of White (1980) to construct a
variance-covariance estimator for β that is robust to all forms
of heteroskedasticity and auto-correlation
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Additional Extensions

Robust Standard Errors

Following Arellano (1987) use X̃ and ˆ̃ε in place of X and ε̂ in
the standard formula for constructing a robust
variance-covariance estimator for the pooled estimator

Recall the sandwich form of the variance-covariance estimator
(A−1BA−1) from Lecture 1, which yields

V ar(β̃) = (X̃ ′X̃)−1

[
N∑
i=1

X̃ ′i ˆ̃εi ˆ̃ε
′
iX̃i

]
(X̃ ′X̃)−1 (15)

Notice this allows for arbitrary heteroskedasticity across
individuals and serial correlation amongst the errors terms
within an individual; still restricts errors across individuals to
be independent
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Highlights from this Lecture

Developed the intuition for the within estimator of the
unobserved effects panel data model when we assumed a fixed
effects specification

Need N −→∞ for consistency of the estimator

Time demeaning eliminates the unobserved individual effect

Incidental parameters problem requires T −→∞ for
consistent estimation of these unobserved, individual specific
effects
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