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Course Overview

Learn current methods for modeling with panel data

Apply these methods with actual datasets for hands on
learning

Use the open source statistical software R

Overall focus will be on the applications of the econometric
models with brief overviews of the statistical underpinnings
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Why Panel Data?

Access to panel data offers the analyst options not available
with cross-section or time series data

Can track individuals/families/regions/firms over time
providing more dynamic analysis

Unobserved heterogeneity easier to control for, allows for more
robust conclusions from the econometric model
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Why Panel Data?

Benefits of Panel Data

Control for individual heterogeneity

More informative data

More variability in the data

Less collinearity

Higher degrees of freedom

Dynamic adjustment

Reduce aggregation bias

Test more complicated models of behavior
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Why Panel Data?

Specific Example

Consider a cross-section of women with 50% average annual
participation rate in the labor force

This 50% could arise because each woman has a 50% chance
of participating in the labor market in any given year or 50%
of the women work every year while 50% of the women never
work

These two cases are extremes, in one case there is high
turnover while in the other this is no turnover

We would need panel to distinguish between these two cases
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Why Panel Data?

Limitations of Panel Data

Data design and collection

Distortion of measurement error

Self-selection

Nonresponse

Attrition

Short time-series dimension

Cross-sectional dependence
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Why Panel Data?

With access to panel data (and panel data models) comes
more choices available to the analyst

A strong background in each model is required to ensure
proper application and interpretation of the results
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Overview of the Cross-Sectional Linear Model

To begin, assume we have N cross-sectional units, observed
over T time periods, for a total of NT observations

xit is a 1×K vector of covariates (or regressors) for
i = 1, . . . , N and t = 1, . . . , T

The population model is

yit = xitβ + εit, (1)

where β is a K × 1 vector, yit is our scalar response
(regressand) variable and εit is the regression error

The model in (1) is a linear panel data model
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Overview of the Cross-Sectional Linear Model

If we ignore the double subscript on y, x and ε there is
nothing that distinguishes the linear panel data model from a
linear cross-sectional model

How we use the i and t dimensions of the data will determine
how much we exploit the panel structure afforded to us
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Overview of the Cross-Sectional Linear Model

Use pooled ordinary least squares (OLS) to estimate linear
panel data model in (1)

Premultiply (1) by x′it to obtain

x′ityit = x′itxitβ + x′itεit (2)

If we assume that E(εit) = 0 and Cov(xit, εit) = 0 then we
have

β =
[
E
(
x′itxit

)]−1
E
(
x′ityit

)
(3)
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Overview of the Cross-Sectional Linear Model

Given data on x and y we can estimate both of these
expectations to construct at estimator for β

We replace E (x′itxit) with (NT )−1
N∑
i=1

T∑
t=1

x′itxit and

E (x′ityit) with (NT )−1
N∑
i=1

T∑
t=1

x′ityit

Our pooled OLS estimator is

β̂ =

(
(NT )−1

N∑
i=1

T∑
t=1

x′itxit

)−1(
(NT )−1

N∑
i=1

T∑
t=1

x′ityit

)
(4)
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Overview of the Cross-Sectional Linear Model

These summation signs can get cumbersome

Can be easier to work with matrices

Let Xi = (xi1, xi2, . . . , xiT ), yi = (yi1, yi2, . . . , yiT ) and
εi = (εi1, εi2, . . . , εiT )

Further, let y = (y1, y2, . . . , yN ), ε = (ε1, ε2, . . . , εN ), which
we refer to as stacked vectors; they both have dimension
NT × 1

Finally, we have X = (X1, X2, . . . , XN ), which is the stacked
matrix of covariates; this matrix has dimension NT ×K
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Overview of the Cross-Sectional Linear Model

With this notation we can express our pooled OLS estimator
of β as

β̂ = (X ′X)−1X ′y (5)
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Overview of the Cross-Sectional Linear Model

To determine the limiting distribution of our pooled OLS
estimator and the variance of this distribution we need to
manipulate how our estimator looks

Note that we can equivalently write β̂ in (4) as

β̂ = β+

(
(NT )−1

N∑
i=1

T∑
t=1

x′itxit

)−1(
(NT )−1

N∑
i=1

T∑
t=1

x′itεit

)
(6)
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Overview of the Cross-Sectional Linear Model

This decomposition is useful because we can then bring β to
the left hand side and multiply by

√
NT to obtain

√
NT

(
β̂ − β

)
=

(
(NT )−1

N∑
i=1

T∑
t=1

x′itxit

)−1
(
(NT )−1/2

N∑
i=1

T∑
t=1

x′itεit

)
(7)

Or in matrix form

√
NT

(
β̂ − β

)
=
(
(NT )−1X ′X

)−1 (
(NT )−1/2X ′ε

)
(8)
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Overview of the Cross-Sectional Linear Model

Under very minimal assumptions we can show that(
(NT )−1X ′X

)−1 P−→ E
[
X ′X

]−1
= A−1

Further, by the central limit theorem we have(
(NT )−1/2X ′ε

)−1 D−→ N
(
0, E

[
X ′εε′X

])
Let B = E [X ′εε′X]
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Overview of the Cross-Sectional Linear Model

We combine these two results to obtain

√
NT

(
β̂ − β

)
D−→ N

(
0, A−1BA−1

)
(9)

We refer to A−1BA−1 as the sandwich form of the
asymptotic variance-covariance matrix

Under a homoskedasticity assumption, E [εε′|X] = σ2I, we
have that E [X ′εε′X] = σ2E [X ′X] = σ2A so
A−1BA−1 = σ2A−1, yielding

√
NT

(
β̂ − β

)
D−→ N

(
0, σ2A−1

)
(10)
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Overview of the Cross-Sectional Linear Model

So what do all of these results tell us?

Under minimal assumptions, treating the panel data as a
pooled sample, the pooled OLS estimator is unbiased,
consistent and asymptotically normal with variance-covariance
matrix σ2A−1

When might these minimal assumptions be violated?

In micro datasets it is likely that heteroskedasticity is present

If lagged variables are present as part of the covariate set then
we may need a stronger assumption than contemporaneous
exogeneity, Cov(xit, εit) = 0
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Overview of the Cross-Sectional Linear Model

Alternative Forms of Exogeneity

Cov(xit, εit) can be equivalently restated as E [εit|xit] = 0

A slightly stronger condition that can allow for some dynamics
in the linear panel data model is sequential exogeneity,
E [εit|xit, xit−1, . . . , xi1] = 0

An even stronger restriction would be strict exogeneity,
E [εit|xi1, xi2, . . . , xiT ] = 0
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Overview of the Cross-Sectional Linear Model

Alternative Forms of Exogeneity

Contemporaneous exogeneity says nothing about the
relationship between xis and εit for s 6= t

Sequential exogeneity says nothing about the relationship
between xis and εit for s > t

Strict exogeneity rules out correlations across all time periods
between x and ε

It is crucial that we understand that these three different
assumptions have different implications for the statistical
properties of the estimators we will study
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Overview of the Cross-Sectional Linear Model

An Example

Let xit = (1, yit−1) so our model is

yit = β0 + β1yit−1 + εit

Contemporaneous exogeneity holds by construction if
E [yit|yit−1] = β0 + β1yit−1 is the data generating process

Sequential exogeneity holds if
E [yit|yit−1, yit−2 . . . , yi0] = E [yit|yit−1] which implies that
only a single lag of yit appears in the full dynamic expectation

Strict exogeneity would fail because
E [εit|yi0, yi1 . . . , yiT−1] =
E [yit − β0 − β1yit−1|yi0, yi1 . . . , yiT−1] = εit 6= 0

So strict exogeneity fails when there are lagged dynamics in a
model, but sequential or contemporaneous exogeneity will still
hold depending on the type of dynamics
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Overview of the Cross-Sectional Linear Model

An Example

Consider the model of Holzer et al. (1993) who study the
impact of job training grants on firm’s scrap rates

A generic linear panel data model for their setup would be

log(scrapit) = β0 + β1grantit + εit (11)

An overriding concern with this generic setup is that firms
that receive grants may have high scrap rates to start with

We could account for this by including the lagged scrap rate

log(scrapit) = β0 + β1grantit + β2 log(scrapit−1) + εit (12)

Now we would need to worry about the different implications
of contemporaneous and sequential exogeneity for our pooled
OLS estimator
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Overview of the Cross-Sectional Linear Model

Accounting for Heteroskedasticity

Note that our assumption that E[X ′εε′X] = σ2E[X ′X] is
quite restrictive

First, we assuming that the error term is constant with
respect to our covariate

Second, we are assuming that the unconditional error variance
does not vary over time

Third, we also have that E[εitεisx
′
itxis] = 0 for t 6= s

In any application any of these assumptions may be seen as
overly restrictive
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Overview of the Cross-Sectional Linear Model

Accounting for Heteroskedasticity

When heteroskedasticity is present it is no longer the case
that E[X ′εε′X] = σ2A

Following White (1980), we can replace B in the sandwich
form with a consistent estimator

White (1980) proved that

(NT )−1X ′ε̂ε̂′X
P−→ E[X ′εε′X] = B, (13)

where ε̂ = y −X ′β̂
Using this estimator for B will allow us to conduct
heteroskedasticity robust inference
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Highlights from this Lecture

Pooled panel data estimation works almost identical to OLS

Care is required regarding the statistical assumptions placed
on the error terms and the covariates

Pooled OLS estimator is unbiased, consistent and
asymptotically normal

Heteroskedasticity robust inference can easily be undertaken
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