Applied Panel Data Analysis - Lecture 10

Christopher F. Parmeter

AGRODEP

March 10-14 ${ }^{\text {th }}, 2015$
Addis Ababa, Ethiopia

- We will cover how to deal with unbalanced panel data
- Discuss the implications of having unbalanced panel data
- Our discussion the entire class so far has dealt with balanced panels, there are T observations for each of the N individuals
- It is more likely that one will have access to an unbalanced panel, where there are individuals with $T_{i}<T$ observations
- Examples include individuals dying or moving out of the sampling area or with cross-country studies, many countries have incomplete data prior to some date
- Conceptually an unbalanced panel introduces some notational complications, but the estimators we have discussed so far still operate in the same fashion
- We will assume that our panel is unbalanced completely at random
- When observations are missing in a systematic fashion this introduces econometric issues that need to be explicitly handled
- Consider a model with two cross sections with an unequal number of time series
- Assume that individual 2 has $T=T_{1}+T_{2}$ observations while individual 1 has just T_{1} observations
- The stacked model is

$$
\binom{y_{1}}{y_{2}}=\binom{X_{1}}{X_{2}} \beta+\binom{u_{1}}{u_{2}}
$$

- X_{1} is of dimension $T \times K$ and X_{2} is of dimension $T \times K$
- The variance-covariance matrix of the error vector is

$$
\Omega=\left[\begin{array}{ccc}
\sigma_{\varepsilon}^{2} I_{T_{1}}+\sigma_{c}^{2} J_{T_{1}} & 0 & 0 \\
0 & \sigma_{\varepsilon}^{2} I_{T_{1}}+\sigma_{c}^{2} J_{T_{1}} & \sigma_{c}^{2} J_{T_{1} T_{2}} \\
0 & \sigma_{c}^{2} J_{T_{1} T_{2}} & \sigma_{\varepsilon}^{2} I_{T_{2}}+\sigma_{c}^{2} J_{T_{2}}
\end{array}\right]
$$

where J_{T} is a $T \times T$ matrix of ones while $J_{T_{1} T_{2}}$ is a $T_{1} \times T_{2}$ matrix of ones

- Notice that all off-diagonal, non zero elements of Ω are σ_{c}^{2}
- This extends to more than two individuals
- Ω in the n individual setting has a block diagonal structure with j th block

$$
\begin{equation*}
\Omega_{j}=\left(T_{j} \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}\right) \bar{J}_{T_{j}}+\sigma_{\varepsilon}^{2} E_{T_{j}} \tag{1}
\end{equation*}
$$

where $\bar{J}_{T_{j}}=J_{T_{j}} / T_{j}$ and $E_{T_{j}}=I_{T_{j}}-\bar{J}_{T_{j}}$

- To apply GLS we again use the spectral decomposition, but at the block level, which gives us

$$
\begin{equation*}
\Omega_{j}^{r}=\left(T_{j} \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}\right)^{r} \bar{J}_{T_{j}}+\left(\sigma_{\varepsilon}^{2}\right)^{r} E_{T_{j}} \tag{2}
\end{equation*}
$$

- Let $\sigma_{1 j}^{2}=T_{j} \sigma_{c}^{2}+\sigma_{\varepsilon}^{2}$, then our unbalanced random effects framework transformation is

$$
\begin{equation*}
\sigma_{\varepsilon} \Omega_{j}^{-1 / 2}=\left(\sigma_{\varepsilon} / \sigma_{1 j}\right) \bar{J}_{T_{j}}+E_{T_{j}}=I_{T_{j}}-\theta_{j} \bar{J}_{T_{j}} \tag{3}
\end{equation*}
$$

where $\theta_{j}=1-\sigma_{\varepsilon} / \sigma_{1 j}$

- Our transformation works as $\check{z}_{i t}=z_{i t}-\theta_{j} \bar{z}_{i}$. where

$$
\bar{z}_{i} .=T_{j}^{-1} \sum_{t=1}^{T_{j}} z_{i t}
$$

- Unlike the balanced panel case for the random effects framework, here our weighting is individual specific
- Individuals with larger T_{j} will have a θ_{j} that is smaller
- This different weighting has important implications for the random versus fixed effects framework setup
- Both the within and between estimators work in similar fashion
- Our Q matrix for the within transformation is now $Q=\operatorname{diag}\left(E_{T_{j}}\right)$ instead of $I_{N} \otimes E_{T}$
- Our P matrix for the between transformation is now $P=\operatorname{diag}\left(\bar{J}_{T_{j}}\right)$ instead of $I_{N} \otimes \bar{J}_{T}$
- The only issue that remains is how to estimate the variance components in the unbalanced case
- As in the balanced case we will use $u^{\prime} Q u$ and $u^{\prime} P u$ to estimate our variance components; here Q and P are in unbalanced form
- This leads to complications in the solutions for $\hat{\sigma}_{1}^{2}$ and $\hat{\sigma}_{\varepsilon}^{2}$
- Amemiya's (1971) approach is to replace u in each of the quadratic forms with the unbalanced within transformation residuals
- Amemiya's estimators are

$$
\begin{align*}
& \widehat{\sigma}_{\varepsilon}^{2}=\frac{\tilde{\varepsilon}^{\prime} Q \tilde{\varepsilon}}{\sum_{j=1}^{N} T_{j}-N-K+1} \tag{4}\\
& \widehat{\sigma}_{1}^{2}=n \frac{\tilde{\varepsilon}^{\prime} P \tilde{\varepsilon}-(N-1+\operatorname{tr}[A]-\operatorname{tr}[B]) \widehat{\sigma}_{\varepsilon}^{2}}{n^{2}-\sum_{j=1}^{N} T_{j}^{2}} \tag{5}
\end{align*}
$$

where $n=\sum_{j=1}^{N} T_{j}, A=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} X^{\prime} P X$ and $B=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} X^{\prime} \bar{J} X$

- Baltagi and Chang (1994) conducted a Monte Carlo study using an unbalanced panel
- They found that balancing the panel leads to losses in inefficiency that are not recommended in practice
- There are two main ways to balance the sample, either the largest total number of observations or the largest number of individuals
- It is recommended to use an unbalanced panel rather than balance the panel as the observations that are lost are not dropped at random
- Consider the unbalanced two-way unobserved effects model

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+c_{i}+d_{t}+\varepsilon_{i t} \tag{6}
\end{equation*}
$$

for $i=1, \ldots, N_{t}$ and $t=1, \ldots, T$

- Here N_{t} denotes the number of individuals that are observed in period t
- This is different than how we described the one-way unobserved effects model
- N will still denote the total number of individuals in the sample
- Let D_{t} be the $N_{t} \times N$ matrix obtained from I_{N} by omitting the rows of the individuals that are not observed in year t
- Next define

$$
\Delta=\left[\begin{array}{ccccc}
D_{1} & D_{1} \imath_{N} & 0 & \cdots & 0 \tag{7}\\
D_{2} & 0 & D_{2} \imath_{N} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]=\left[\Delta_{1}, \Delta_{2}\right]
$$

- Letting $n=\sum_{t=1}^{T} N_{t}$ signify the total number of observations in the unbalanced panel, Δ_{1} is $n \times N$ while Δ_{2} is $n \times T$
- One key difference with this setup is that the fast index here is individuals and the slow index is time; this is the opposite from both the balanced case and the one-way unbalanced case
- Δ is simply the matrix of time and individual dummies, just for a different arrangement of the data
- For n large it will be infeasible to incorporate these dummies directly into the model (in the fixed effects framework)
- A few interesting properties of the Δ matrices:
- $\Delta_{1}^{\prime} \Delta_{1}=\operatorname{diag}\left[T_{i}\right]$, the matrix that describes the number of years each individual appears in the sample
- $\Delta_{2}^{\prime} \Delta_{2}=\operatorname{diag}\left[N_{t}\right]$, the matrix that describes the number of observations in each year of the sample
- $\Delta_{2}^{\prime} \Delta_{1}$ is the $T \times N$ matrix of zeros and ones that indicates the absence/presence of an individual in a given year
- For the balanced panel case $\Delta_{1}^{\prime} \Delta_{1}=T I_{N}, \Delta_{2}^{\prime} \Delta_{2}=N I_{T}$ and $\Delta_{2}^{\prime} \Delta_{1}=\imath_{T} \imath_{N}^{\prime}=J_{T N}$
- To construct the two-way transformation we define

$$
P_{[\Delta]}=\Delta\left(\Delta^{\prime} \Delta\right)^{-} \Delta^{\prime}
$$

- The within transformation is then $Q_{[\Delta]}=I_{n}-P_{[\Delta]}$
- Using matrix algebra one can show that

$$
\begin{equation*}
P_{[\Delta]}=P_{\left[\Delta_{1}\right]}+P_{\left[Q_{\left[\Delta_{1}\right]} \Delta_{2}\right]} \tag{8}
\end{equation*}
$$

- Why is this important?
- Davis (2001) showed that this formulation for $P_{[\Delta]}$ is recursive; therefore if you have higher order panel data that is unbalanced, this technique is useful
- As an example consider matched employee-employer data, there you have a time effect, a firm effect and a worker effect
- Or consider cross-country trade databases, where you have an importer, an exporter and year effects
- Consider Δ_{1}, Δ_{2} and Δ_{3}, then the decomposition would be

$$
\begin{equation*}
P_{[\Delta]}=P_{\left[\Delta_{1}\right]}+P_{\left[Q_{\left[\Delta_{1}\right]} \Delta_{2}\right]}+P_{\left[Q_{\left[Q_{\left[\Delta_{1}\right]} \Delta_{2}\right]} Q_{\left[\Delta_{1}\right]} \Delta_{3}\right]} \tag{9}
\end{equation*}
$$

- In the random effects framework we write our error component as

$$
\begin{equation*}
u=\Delta_{1} c+\Delta_{2} d+\varepsilon \tag{10}
\end{equation*}
$$

with variance-covariance matrix

$$
\begin{align*}
\Omega & =\sigma_{\varepsilon}^{2} I_{n}+\sigma_{c}^{2} \Delta_{1} \Delta_{1}^{\prime}+\sigma_{d}^{2} \Delta_{2} \Delta_{2}^{\prime} \\
& =\sigma_{\varepsilon}^{2}\left(I_{n}+\phi_{1} \Delta_{1} \Delta_{1}^{\prime}+\phi_{2} \Delta_{2} \Delta_{2}^{\prime}\right)=\sigma_{\varepsilon}^{2} \Sigma \tag{11}
\end{align*}
$$

- Σ is an $n \times n$ matrix so direct inversion will typically not be computationally easy
- Wansbeek and Kapteyn (1989) use results for $\left(I+W W^{\prime}\right)^{-1}$ to show

$$
\begin{equation*}
\Sigma^{-1}=V-V \Delta_{2} \tilde{P}^{-1} \Delta_{2}^{\prime} V \tag{12}
\end{equation*}
$$

where $V=I_{n}-\Delta_{1} \Delta_{N}^{-1} \Delta_{1}^{\prime}, P=\Delta_{T}-\imath_{T} \imath_{N}^{\prime} \Delta_{N}^{-1} \imath_{N} \imath_{T}^{\prime}$, $\Delta_{N}=T I_{N}+\left(\sigma_{\varepsilon}^{2} / \sigma_{c}^{2}\right) I_{N}$ and $\Delta_{T}=N I_{T}+\left(\sigma_{\varepsilon}^{2} / \sigma_{d}^{2}\right) I_{T}$

- Unfortunately, matrix analytic solutions for $\sigma_{\varepsilon}^{2}, \sigma_{c}^{2}$ and σ_{d}^{2} do not exist in the unbalanced two-way case
- Tests for significance of the unobserved effects can be formulated as well as a Hausman test
- However, these tests have complicated structures given the unbalanced nature of the panel data
- Sound testing may reveal that a two-way effects model is statistically indifferent from a one-way error component model, in which case the notation is easier to handle
- Unbalanced panel leads to notational complications not present in the balanced panel case
- Closed form transformations exist in the one-way effect case but not in the two-way effects setup
- Should avoid balancing the panel as this can dramatically distort estimates

