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Measures of poverty

Individual poverty: The poverty line

Quantifying poverty

Strictly speaking, poverty (at individual- or household-level) is defined
as possessing insufficient resources to reach a ‘satisfactory’ living
standard

“Satisfactory”?

Quantitative, monetary approach (narrowly defined perhaps – see
session on multidimensional approach): assume we can set a
minimum level of resources (income, expenditure, in ‘single adult
equivalents’) z –the poverty line– under which one can not maintain
an acceptable living standard

Focus on the bottom of the distribution
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Measures of poverty

Individual poverty: The poverty line

Three questions

Three questions:
I Who is poor? Identification

I (NB: in EU, official statistics refer to being ‘at risk of poverty’)

I What is the intensity of poverty of an individual?

I What is the aggregate level of poverty in the population?
Aggregation
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Measures of poverty

Individual poverty: The poverty line

Identification: the poverty line

A person is in poverty (or ‘at risk of poverty’) if the equivalent income
y of the household to which he belongs to is below z

z is the poverty line

An important distinction
I ‘absolute’ poverty line

I ‘relative’ poverty line
In any case, fair amount of arbitrariness in this discontinuity
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Measures of poverty

Individual poverty: The poverty line

A relative poverty line

In OECD countries, typical approach is to use a ‘relative’ poverty line

Usually, z is determined as a pre-defined fraction of a reference
income:

z = f Y

where Y is typically the median income (sometimes the mean income)
and where f is ... (what do you think?) ... between 0.50 et 0.70
(EU measures use f = 0.60)

(NB: the choice of f is largely arbitrary)
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Measures of poverty

Individual poverty: The poverty line

A relative poverty line
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Measures of poverty

Individual poverty: The poverty line

An absolute poverty line

z reflects the monetary value of a ‘minimal’ consumption bundle (e.g.,
to reach a given calorie intake, e.g., 2,250 calories norm per day)
Typically determined by ‘expert groups’

I food intake only?

I allowance for non-food items?

Once determined, the value is updated for price increases over time
(the reference bundle is normally held constant)
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Measures of poverty

Individual poverty: The poverty line

Variants

I A ‘mixed’ approach: z determined by a relative approach at one
point in time... but then updated by variations in prices (not
variations in the reference level)

I A combined approach: z = (zr )θ × (za)1−θ

I Subjective determination: use survey questions to assess the
poverty line. Respondents are directly asked how much they
perceive as required to get along in the society.

In any case, arbitrariness is inevitable: avoid putting to much
emphasis on discontinuity at the poverty line and rely on methods
robust to choice of poverty line (presented shortly)
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Measures of poverty

Individual poverty: The poverty line

Intensity of poverty: the poverty gap

All poor people are not equally poor: the ‘poverty gap’ gives an idea
of the intensity of the poverty experience of a person with income yi

gi = max
(

z − yi

z
,0
)

Gap is zero for non poor individuals, and is equal to relative shortfall
from the poverty line (expressed as fraction of poverty line) for poor
people. (Note that it is independent of the units of the data – help
comparisons over time and space)
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Measures of poverty

Some poverty measures

Aggregation: properties of measures of poverty
Key property of poverty indices is ‘focus’ (which makes it different
from inequality or aggregate welfare measures): the measure is not
influenced by income of non-poor people
Additional relevant properties:

I ‘monotonicity’: poverty reduced (or not increased) by increase in
income of a poor person (and all other poor people unaffected)

I ‘transfer principle’: transfer from poor person to an even poorer
person reduces poverty – inequality aversion à la Pigou-Dalton
(but focused on the poor)

I (‘transfer sensitivity’: poverty-reducing impact of a poor-to-poorer
transfer is bigger if taking place at lower income levels)

(Many other properties can and have been advocated, see Zheng
(1997) for a thorough review)
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Measures of poverty

Some poverty measures

The headcount index

Poverty rate, or headcount index, merely looks at proportion poor:

H =
1
N

N∑
i=1

I(yi ≤ z) = F (z)

Sharp discontinuity at z and H is insensitive to the intensity of poverty
(it is cost-efficient to reduce poverty according to H by giving transfers
to the least poor first, so that they leave poverty with small transfers –
not a very attractive feature!)
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Measures of poverty

Some poverty measures

Poverty gap ratio

The ‘poverty gap ratio’ – the average gap:

P =
1
N

N∑
i=1

gi =
1
N

N∑
i=1

max
(

z − yi

z
,0
)

Not to be confused with the average gap among the poor:
IG = 1

N H
∑N

i=1 gi = P
H
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Measures of poverty

Some poverty measures

The Foster-Greer-Thorbecke family

The ‘Foster-Greer-Thorbecke’ (FGT) index is a generalization of the
previous two:

PFGT
α =

1
N

N∑
i=1

gα
i

FGT(0) is the headcount ratio, FGT(1) is the ‘poverty gap ratio’.
Taking α > 1 assigns greater weight to gap of the poorest (satisfy a
transfer principle (unlike α < 1!))
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Measures of poverty

Some poverty measures

The Foster-Greer-Thorbecke family

Poverty contributions for different α parameters (from Deaton (1997,
p.145)):
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Measures of poverty

Some poverty measures

The Watts index

The Watts index (Watts, 1968) is defined as:

PWATTS =
1
N

N∑
i=1

ln
(

z
yi

)
I(yi ≤ z)

It is approximately the average proportional shortfall from the poverty
line
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Measures of poverty

Some poverty measures

The Sen index
Sen was ‘pioneer’ in putting explicit weight on inequality among the
poor in an axiomatic framework. The index proposed by Sen (1976)
has a different structure:

PSEN = H × IG × (1 + Gp)

where Gp is the Gini coefficient of poverty gaps income among the
poor (formulation from Xu and Osberg (2002))
It can also be written

PSEN =
1
N

q∑
i=1

2
q + 0.5− i

q
gi

where q is the number of poor, so it is a weighted average poverty
gap, with weight linearly decreasing with individual ranks from the
poorest to non-poor
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Measures of poverty

Some poverty measures

The Sen-Shorrocks-Thon index

Variants of the Sen index have been proposed to address some (mild)
‘deficiencies’. E.g., the SST index ‘improves upon’ Sen’s original
index by weighting by rank over entire distribution (not only the poor):

PSST =
1
N

N∑
i=1

2
N + 0.5− i

N
gi

Again a weighted average poverty gap, with weight linearly
decreasing with individual ranks, but now from the poorest to richest

PSST = H × IG × (1 + G)

where G is Gini of poverty gaps in the total population
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Measures of poverty

Some poverty measures

‘Three I’s of Poverty’ (TIP) curves
The TIP curve illustrates three I’s of poverty: Incidence, Intensity,
Inequality

Taux pauvreté: .14
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It is a cumulation of
(normalized) poverty gaps
from biggest to lowest:
TIP(p) = 1

N
∑Np

i=1 gi with
0 ≤ p ≤ 1



Poverty measurement and analysis

Measures of poverty

Some poverty measures

‘Three I’s of Poverty’ (TIP) curves
The TIP curve illustrates three I’s of poverty: Incidence, Intensity,
Inequality

Taux pauvreté: .14
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Estimation from survey data

Estimation

Estimation with survey data

The various indicators and methods presented so far are easily
estimated from survey data (or registers) using formulae given (or
obvious sample analogues).
Note however, two issues with sample data:

I Dealing with sampling weights (due tu unequal sampling
probabilities)

I Inference (taking survey design into account)
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Estimation from survey data

Sampling weights

Using sample weights

Incorporating sampling weights is usually straightforward

µy =
1∑N

i=1 wi

N∑
i=1

wiyi

F (y) =
1∑N

i=1 wi

N∑
i=1

wi I(yi ≤ y)

(I(A) = 1 if A is tru 0 otherwise)
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Estimation from survey data

Sampling weights

Using sample weights

A weighted covariance (for Gini estimation) is

Cov(x , y) =

( ∑N
i=1 wi

(
∑N

i=1 wi)2 −
∑N

i=1 w2
i

) N∑
i=1

wi(xi − µx )(yi − µy )

Lorenz curve

L(p) =

∑J
i=1 wiyi∑N
i=1 wiyi

whereJ is such that
∑J

i=1 wi∑N
i=1 wi

= p
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Estimation from survey data

Inference

Two main approaches

Two main approaches for variance estimation, constricution of
confidence intervals, tests

I analytic, linearization approaches

I empirical, resampling-based approaches
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Estimation from survey data

Inference

Variance estimation by linearization
general principles

I θ is the statistic of interest, estimated by θ̂
I A linearization variable Z for θ, is a linear variable (Ẑ =

∑
i wizi )

such that
Var(Ẑ ) ≈ Var(θ̂)

I Once we know zk , it is easy to estimate Var(Ẑ ) and therefore
Var(θ̂) (it is the variance of a total – methods are well-known to
estimate this with various complex survey design)

I Deville (Survey Methodology, 1999) demonstrates that the
‘influence function’ (IF) of θ is a valid linearization variable, and
gives rules to compute the IF for a variety of statistics. (Other
linearization approaches have been used too.)
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Estimation from survey data

Inference

Linearization variables for poverty measures

Berger & Skinner (App. Statist., 2003) use Deville’s method to derive
the IF for the low income proportion

I Ignoring estimation of z

zk =
1
N

(δ{yk ≤ z} − p̂)

I With estimation of ẑ = α ˆMed

zk =
1
N

(
(δ{yk ≤ ẑ} − p̂)− f (ẑ)

α(δ{yk ≤ ˆMed} − 0.5)

f ( ˆMed)

)

(similar shape for broader class of measures, also if mean is
reference income)
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Estimation from survey data

Inference

Resampling-based inference

Often, textbooks/articles give analytical formulae to estimate standard
errors (as per above). But in some non-standard cases the
derivations are intractable, do not exist, or you can’t find it anywhere...

Resampling-based methods can help
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Estimation from survey data

Inference

The bootstrap
I Principle: The sample is an ‘clone’ of the population...
I ... you simulate sampling from this population by drawing

re-samples (with replacement) ...
I ... compute your estimate in each of these re-samples...
I ... and assess the sampling variability by the variability across all

re-samples
I Number of replications needs be high to have accurate estimates

(e.g. 1000)
I Leads to consistent estimates of SEs
I Some procedures provide “asymptotic refinements” over

asymptotic analytic formulae (better performance in finite
samples)

I Caveat: slow (real limitation if point estimation itself
time-consuming)
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Estimation from survey data

Inference

Bootstrap confidence intervals

I Various possibilities can be considered for building CIs
I If sampling distribution of estimator is normal, plug bootstrap SE

into classical CI formula for a normal distribution (default reported
in Stata)

I If you’re not sure it is normal, can simply sort your bootstrap
estimates and take α/2th and (1− α/2)th values as CI boundaries
(also computed by Stata)

I Other methods can provide improved precision, but often much
more time-consuming, e.g. Bias-corrected and accelerated
bootstrap or double-bootstrap
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Estimation from survey data

Inference

The jackknife

I Another resampling-based method
I ‘deterministic’ resampling (unlike bootstrap)
I remove one obs. and repeat estimation; repeat by removing all

obs. in turn
I by combining all the estimates, one can estimate the SE of the

orignal estimate
I sometimes results in ‘closed from’ expressions estimable without

actually replicating!
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Estimation from survey data

Inference

Complex design

With any resampling method, the survey design still needs to be taken
into account!
In particular, it is essential to

I resample ‘PSUs’ together
I resample with sampling strata

Current practice typically with ‘delete-one-psu jackknife’ or ‘block
bootstrap’ (resampling PSU’s with replacement) –usually OK if large
number of PSUs per stratum–

but resampling inference with complex survey still a subject of
ongoing research
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Robust poverty comparisons: dominance

Classes of poverty measures

Dominance

Dominance checks are used to make ‘robust’ comparisons of poverty
in two distributions

I robust to choice of a particular index, and/or
I robust to choice of a particular poverty line, and/or
I robust to choice of a particular equivalence scale

Robustness has a cost: ordering is only ‘partial’. Sometimes, one may
not be conclusive based on dominance checks only
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Robust poverty comparisons: dominance

Classes of poverty measures

Classes of poverty measures

Three classes of poverty measures are considered here:

The first two are denoted as in Lambert (2001) PA and P∗
A. They are

of the generic additive form:

P =

∫ z

0
θ(y , z)f (y)dy

with θ(y , z) continuous and decreasing in y being individual poverty
‘contributions’. P∗

A is a sub-class of PA in which θ(y , z) is also convex
in y .

PA includes, e.g., the FGT indices (not strictly for the headcount
index), Watts index but not Sen’s index. P∗

A excludes the headcount or
an FGT index with α < 1.
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Robust poverty comparisons: dominance

Classes of poverty measures

Classes of poverty measures (ctd.)

The third class is a further restricted subset defined over (normalized)
poverty gaps, denoted as in Lambert (2001) PNG. It is of the form:

P =

∫ z

0
Φ(g)f (y)dy

where g is the normalized poverty gap z−y
z and Φ(0) = 0, Φ′(g) > 0,

Φ′′(g) > 0

This class obviously includes the FGT index (provided α ≥ 1), but
also Watts’ index (with Φ(g) = − ln(1− g)). The main difference is
now that the scale of units is irrelevant.
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Robust poverty comparisons: dominance

Stochastic dominance

First-order poverty dominance

Consider two distributions A and B sharing a common poverty line z.
Atkinson (1987) shows that if the CDF of A is below the CDF of B up
to income level Z , then poverty is lower in A according to any poverty
index in class PA and for any common poverty line z ≤ Z .
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Robust poverty comparisons: dominance

Stochastic dominance

Second-order poverty dominance

Consider again two distributions A and B sharing a common poverty
line z. Atkinson (1987) also shows that if the integral of the CDF of A
is below the integral of the CDF of B (

∫ y
0 F A(s)ds ≤

∫ y
0 F B(s)ds) up to

income level Z , then poverty is lower in A according to any poverty
index in class P∗

A and for any common poverty line z ≤ Z .

The plot of
∫ y

0 F A(s)ds against y is sometimes called the poverty
deficit curve and can be shown to be equivalent to a plot of∫ y

0 (y − s)f (s)ds against y
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Robust poverty comparisons: dominance

TIP dominance

TIP dominance
The common poverty line case

Jenkins and Lambert (1997) show that if a TIP curve for A is
everywhere below the TIP curve for B (for a common poverty line Z ),
then poverty is lower in A than in B for any index in PNG and for any
common poverty line z ≤ Z



Poverty measurement and analysis

Robust poverty comparisons: dominance

TIP dominance

TIP dominance
The separate poverty lines case

Consider now a situation in which distribution A has poverty line ZA
and distribution B has poverty line ZB – poverty gaps are defined in
the two situations with the respective poverty lines (not a common line
anymore).
Jenkins and Lambert (1997) show that if the TIP curve for A is
everywhere below the TIP curve for B (for the separate povety lines
ZA and ZB), then poverty is lower in A than in B for any index in PNG
and for any pair of poverty lines kZA and kZB (with k ∈ (0,1)).

(Some results exist when TIP curves cross once – see Jenkins and
Labmert (1997).)
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Robust poverty comparisons: dominance

Sequential dominance

Sequential poverty dominance

Remember the problem of comparing poverty for households with
different needs. Typically this is addressed by applying a conversion
function to all incomes to convert to a common reference household
type (the equivalence scales)

Potential issue about specific form of equivalence scale: sequential
poverty dominance attempts to make robust comparisons

Consider total household income (not equivalized). Assume K
household types can be ranked in increasing order of ‘needs’. A
different poverty line Zk is chosen for each type: the most needy
group will have the higher line: Z1 ≥ Z2... ≥ ZK .
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Robust poverty comparisons: dominance

Sequential dominance

Sequential poverty dominance (ctd.)

Assume that we are interested in indices of the type P∗
A. For simplicity,

assume the same index is used for each household type (although
that can be relaxed).

Let Fk be the CDF of income for type k households and pk be the
proportion of these households in the population. Define

Tj(z) =
j∑

k=1

∫ z

0
pkFk (y)dy

(Tj(z) is the poverty deficit curve for the sub-population of pooled
households of type k ≤ j (at least as needy as type j).)
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Robust poverty comparisons: dominance

Sequential dominance

Sequential poverty dominance (ctd.)

Chambaz and Maurin (1998) show that if for each j the curve T A
j (z)

for distribution A is below T B
j (z) for distribution B for all z ≤ Zj (using

A and B shares of the population types), then poverty is lower in A
than in B for any index of type P∗

A, (and for any sets of poverty lines
zj ≤ Zj (provided ordering of lines by need is preserved)).

This is a sequential test: start by checking (second order) poverty
dominance for the neediest group up to its poverty line Z1, then add
the second neediest group and check dominance up to Z2 (Z2 ≤ Z1),
etc. up to the end.
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Poverty profiles and decompositions

Poverty profiles – decompositions by sub-group

Sub-group decompositions of additive measures

Some of the aggregate measures of poverty can be decomposed into
sub-group contributions (‘poverty profiles’): e.g., to show contributions
by region of residence, by family composition, etc.

This is the attractive feature of additive measures, such as FGT or
Watts indices.

Partition population into M sub-groups, and denote sm the share of
population in each of the M sub-groups.
Aggregate poverty is

Pα =
M∑

m=1

sm Pm
α
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Poverty profiles and decompositions

Poverty profiles – decompositions by sub-group

Sub-group decompositions

Analysis of profiles typically consists in reporting
I The poverty level in subgroup m: Pm

α

I The relative poverty risk in subgroup m: Pm
α

Pα

I The contribution of subgroup m to total poverty: smPm
α

Pα
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Poverty profiles and decompositions

Poverty profiles – decompositions by sub-group

Sub-group decompositions

I By the same logic, partitions can be nested.
I Contributions are index-specific
I (Distinction between subgroup decomposability and subgroup

consistency – Sen’s index is none of the two)
I (No role for ‘between-group poverty’)
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Poverty profiles and decompositions

Poverty profiles – decompositions by sub-group

Sub-group decompositions for changing poverty

Subgroup decompositions can be used to identify what contributed to
change in poverty over time: contribution of changes in subgroup
population shares vs. changes in subgroup poverty rates
Compute what would poverty be if subgroup shares had remained as
in year 1 but with subgroup poverty rates of year 2. Contrast this with
actual poverty in year two. Similarly by fixing subgroup poverty rates,
etc.
Index number issue (see supra)
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Poverty profiles and decompositions

Decomposing poverty change into growth and redistribution

Growth-redistribution decompositions

How much of a change in poverty can be attributed to changes in the
(relative) distribution of living standards and how much can be
attributed to change in the average levels of living standards?

Decompose change in poverty index using counterfactual constructs.
One decomposition is:

P2 − P1 = G(1,2, r) + D(1,2, r) + R(1,2, r)

G is a growth contribution, D is a dispersion contribution, and R is a
residual
Approach independent on index used
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Poverty profiles and decompositions

Decomposing poverty change into growth and redistribution

Growth-redistribution decompositions
Index number problem

Let P̃t (r , s) be the poverty at time t that would be observed with the
level of income observed at time r and dispersion observed at time s.
Obviously: Pt = P̃t (t , t).

I G(1,2, r) = P̃2(2, r)− P̃1(1, r)

I D(1,2, r) = P̃2(r ,2)− P̃1(r ,1)

P̃t (r , s) can be constructed by computing poverty of the vector of

incomes composed of µr ×
F −1

s (Ft (y t
i ))

µs
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Poverty profiles and decompositions

Decomposing poverty change into growth and redistribution

Growth-redistribution decompositions
Index number problem

Results will vary for different choice of r (that is for different reference
over which the change in means or dispersion is assessed). This
causes the residual.
A decompostion without residual is P2 − P1 = G(1,2,1) + D(1,2,2).
Or P2−P1 = G(1,2,2) + D(1,2,1). This is the index number problem.
One solution is to average contributions over the two possible choices
(simplest ‘Shapley’ value decomposition)
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Poverty profiles and decompositions

Decomposing poverty change into growth and redistribution

Growth-redistribution decompositions
Combining methods?

One could conceivably combine growth-dispersion decompositions
with subgroup decompositions: identify contribution of change in
subgroup shares, change in subgroup income levels, change in
inequality ‘within’ and ‘between’ groups
Index number issue:

I sequential approach vs. marginal approach
I Shapley value?

(How would you do this? Take this as challenge.)
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Poverty profiles and decompositions

SST index decomposition

Multiplicative decomposition of change in SST index

The SST index is not subgroup decomposable, but its change has a
particular multiplicative decomposability since it can be written has
product of poverty rate (incidence), income gap ratio (intensity) and
an inequality component:

dPSST

PSST =
dH
H

+
dIG
IG

+
d(1 + G)

(1 + G)

(The last term is apparently typically very small. See Xu and Osberg
(2002))
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Descriptive regressions

Binary choice models

Binary choice models

A ubiquitous way to assess relationships between poverty and
‘covariates’ is using regression models.
‘Descriptive regressions’: no attempt made to identify causal effects,
but identify magnitude of associations (see another session of impact
assessment for ‘causality’)
Binary data, so use of binary choice models, typically probit or logit:

Pr(yi ≤ z|Xi) = Φ(Xiβ)

where Φ() is standard normal CDF (for a probit model) and β are
regression coefficients on covariates X
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Descriptive regressions

Binary choice models

Marginal effects or discrete effects

Because of non-linearity of the model, often easier to look at marginal
effects: βφ(Xiβ)

But marginal effects vary with X :
I Evaluate marginal effect at the mean: βφ(X̄β)

I Evaluate marginal effect at other relevant covariate configuration:
βφ(X Rβ)

I Average marginal effect: 1
N
∑N

i βφ(Xiβ)

For discrete covariates: look at discrete changes in probability
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Descriptive regressions

Binary choice models

Alternative regression approaches

I Censored regression (tobit) can be used to model poverty gaps

I Model income distributions and draw implications for any poverty
index:

I e.g. using flexible parametric distributions, e.g. Singh-Maddala
(Biewen and Jenkins 2005)
See last session for more elaborate approaches
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