Trade Reform and Quality Upgrading in South Africa: A Product Level Analysis

Marko Kwaramba

University of Witwatersrand

20 November 2013

Outline

- Introduction
- Contribution
- Objectives
- South Africa Trade Liberalization
- Literature Review
- Methodology
- Results
- Conclusion

Introduction

- Impact of trade liberalization on product quality is both theoretically and empirically ambiguous (Schumpeter,1942; Aghion et al., 2005; Amiti and Khandelwal, 2012, Fan and Li, 2012).
- Quality of exports is central to international competitiveness
- South Africa extensively liberalized
- South Africa's average tariff has fallen from around 23% in the early 1990s to 8.2% in 2011
- Pre 2001 and post 2000 tariff structure- MFN, SADC, EU, EFTA

Introduction cont.

- Trade liberalization channels to quality- competition, variety, quality and learning effects (Lacovone, 2012, Hummels and Klenow, 2005, Fan and Li, 2012)
- Despite this extensive liberalization little research has been done
- What's the effect on quality upgrading of South African export products?

Contribution

- Most existing studies on tariff liberalization and quality upgrading not done in Africa
- This study adds to this literature by using highly disaggregated trade data using an African data set
- Methodology, dimension and variables
- Majority of recent studies focus on firm-level data (see Fernandes and Paunov, 2011; Topalova and Khandelwal, 2011; Lacovone, 2012)
- The focus is at product level- dimension not extensively exploited in literature

Objectives

- To ascertain the impact of trade liberalization on product quality upgrading in South African exports.
- Specifically, the study assesses the impact of tariff liberalization on product quality
- The study seeks to determine whether lower import tariffs on HS8 products raises the export unit values of such products.

Trade liberalization in South Africa

- Trade liberalization in South Africa characterized by two periods:
- The pre-democratic era and the post-democratic era
- SACU 1910
- Accession of South Africa to the World Trade Organization in 1995
- Since 2000, regional trade agreements dominates -tariff impact-SADC, TDCA, EFTA

Literature Review

- Ranges from traditional trade theories, new trade theories and "new new" trade theories
- Eaton- Kortum (2002)
- Dixit and Stigltz,1970, Krugman, 1980
- Melitz (2003)- heterogeneous firms trade model
- Introduction of quality in heterogeneous trade models by Johnson (2012), Verhoogen (2008), Baldwin and Harrigan (2011)
- Distance of the product from world technological frontier models (Aghion et al. 2005, Schumpeter, 1942)

Empirical Evidence

- The measurement of product quality is a major challenge in current quality and trade literature (Hallak and Schott, 2010)
- Most empirical trade literature uses the unit value (prices) of products as a measure of product quality
- Fernandes and Paunov, 2011; Bastos and Silva, 2010; Schott, 2004, Kugler and Verhoogen, 2008
- Studies by: Hallak and Schott (2008)
- Hummels and Klenow (2005)
- Ardelean (2011)
- Amit and Khandelwal (2012)
- Bustos and Silva, 2011; Monova and Zhang, 2012; Martin, 2010-firm level

Empirical Specification

- Empirical methodology draws both from existing theoretical models and available data.
- The empirical equation follows specifications from existing studies
- E.g. Amit and Khandelwal, 2012; Baldwin and Harrigan, 2011
- Employs panel data method that exploits variation across the product level-at HS8
- $Luv_{it} = \beta_0 + \beta_1 Ltariff_{it} + \beta_2 mc_{it} + \gamma_i + \lambda_t + \varepsilon_{it}$ (1)
- Incorporating other variables:-
- $Luv_{it} = \beta_0 + \beta_1 Ltariff_{it} + \beta_2 mc_{it} + \beta_3 Lgdpcap_SA_t + \beta_4 w \exp_g_t + \beta_5 wgdp_g_t + \beta_6 Lfdi_t + \lambda_t + \varepsilon_{it}$ (2)
- Data sources

Empirical Results: Full Sample Results (1988-2009) - Using HS8 Data

	1	2	3	4	5	6	7	8	9
ltariff	4.166		4.139	0.268	0.630	0.116	0.620	0.448	0.454
	(114.88)*		(113.66)	(4.60)**	(17.11)**	(2.37)*	(16.43)**	(11.48)**	(6.57)**
lagtariff		0.473	0.21						
		(18.31)**	(8.35)**						
lmvd				0.040		0.078			0.051
				(16.14)**		(35.46)**			(17.45)**
mc					1.623		1.623	1.583	
					(226.39)*		(224.80)*	(212.13)**	
					101	0.164	0.0024		1.204
lgdp_SA						(2.90)**	(0.01)		(14.30)**
wexp_g						0.199	0.525		-0.415
						(3.26)**	(12.08)**		(5.31)**
wgdp_g						-0.017	-0.036	-0.035	0.048
						(4.15)**	(11.64)**	(11.73)**	(7.55)**
lfdid									-0.058
									(10.44)**
Constant	0.989	1.219	0.978	1.546	0.337	-0.261	0.394	0.480	-7.147
	(281.21)*	(382.71)*	(259.70)	(44.72)**	(77.80)**	(0.57)	(1.17)	(35.57)**	(11.69)**
P.F.E	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
Y.F. E	No	No	No	Yes	No	No	No	Yes	No
\mathbb{R}^2	0.04	0.00	0.04	0.01	0.19	0.00	0.19	0.20	0.0
N	300,146	300,145	300,145	161,142	300,146	161,142	300,146	300,146	111,663

Results explanation

- Columns 1-5 show the estimation of equation 1 above,
- Columns 6-9 show the estimation of equation 2
- Results consistently show positive relationship between tariffs and product quality
- Possible reasons.

Sub-sample results; 1988-2000

•	1	2	3	4	5	6	7	8
ltanff	3.311 (74.57)**		3.302 (74.14)**	0.357 (5.14)**	0.662 (14.70)**	0.478 (7.49)**	0.357 (5.14)**	0.212 (2.18)*
lagtariff	, ,	0.249 (8.37)**	0.084 (2.84)**	. ,	, ,	, ,	. ,	. ,
lmv		,	,	0.047 (13.84)**		0.047 (13.89)**	0.047 (13.84)**	0.056 (12.66)**
mc				, ,	1.508 (156.92)**	, ,	. ,	, ,
lgdpcap_SA					, ,	1.190 (6.71)**		0.701 (1.97)*
wexp_g						-0.166 (1.88)		-0.784 (6.88)**
wgdp_g						-0.075 (9.92)**	-0.035 (4.97)**	0.117 (5.41)**
lfdid						(2.22)	(1.2.)	-0.128 (9.16)**
Constant	1.031 (224.16)**	1.245 (309.74)**	1.025 (207.25)**	1.439 (32.81)**	0.401 (68.01)**	-7.854 (5.57)**	1.605 (34.07)**	-1.783 (0.62)
P.F.E	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Y.F. E	No	No	No	Yes	No	No	Yes	No
R^2	0.03	0.00	0.03	0.01	0.14	0.00	0.01	0.01
N	204,111	204,110	204,110	110,342	204,111	110,342	110,342	66,129

Sub-sample results; 2001-2009

	1	2	3	4	5	6	7	8
ltariff	2.439	•	2.439	0.450	1.657	0.390	0.450	0.552
	(31.16)**		(31.10)**	(2.33)*	(20.25)**	(2.02)*	(2.33)*	(2.71)**
lagtariff		0.069	-0.00185					
		(1.90)	(0.05)					
lmv				0.018		0.023	0.018	0.017
				(4.34)**		(5.52)**	(4.34)**	(3.93)**
mc					0.42453			
					(31.01)**			
lgdp_SA						1.607		1.023
						(23.94)**		(7.22)**
wexp_g						0.379		2.287
						(5.01)**		(16.89)**
wgdp_g						0.004	-0.099	-0.126
						(0.69)	(20.47)**	(13.53)**
lfdid								0.086
								(7.96)**
Constant	1.108	1.214	1.108	1.531	0.918	-11.341	1.699	-8.270
	(249.28)**	(388.24)**	(239.26)**	(27.12)**	(121.88)**	(21.09)**	(29.84)**	(8.69)**
P.F. E	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Y. F.E	No	No	No	Yes	No	No	Yes	No
R^2	0.01	0.00	0.01	0.03	0.02	0.02	0.03	0.03
N	96,035	96,035	96,035	50,800	96,035	50,800	50,800	45,534

Sensitivity Analysis

- Our study employs various sensitivity analysis:
- estimation using only time-specific effects
- using lagged tariff
- using different sub-sample periods 1988-2000; 2001-2009.
- classified products into those with high, medium and low initial tariff in 1988 and repeated the above regressions
- Using HS6 digit level data
- The results are robust, showing that tariffs have a positive effect on product quality

Conclusion

- The study investigates the impact of tariff liberalization on export product quality upgrading at the HS8-digit code from 1988 to 2009
- The results indicate that tariff liberalization is associated with a decline in the quality upgrading of South African products.
- Results support the appropriability effect
- Policy recommendation- future trade reforms need to address this failure of South African exporters to upgrade their products.
- Need for case-by-case consideration for further tariff liberalization
- Future studies- use of Input Output Table, use of alternatives product quality measures

THANK YOU MERCI